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The breaking of ergodicity in isolated quantum systems with a single-particle mobility edge is an
intriguing subject that has not yet been fully understood. In particular, whether a nonergodic but metallic
phase exists or not in the presence of a one-dimensional quasiperiodic potential is currently under active
debate. In this Letter, we develop a neural-network-based approach to investigate the existence of this
nonergodic metallic phase in a prototype model using many-body entanglement spectra as the sole
diagnostic. We find that such a method identifies with high confidence the existence of a nonergodic
metallic phase in the midspectrum at an intermediate quasiperiodic potential strength. Our neural-network-
based approach shows how supervised machine learning can be applied not only in locating phase
boundaries but also in providing a way to definitively examine the existence or not of a novel phase.
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Introduction.—Investigating the properties of eigenstates
in isolated quantum many-body systems is essential for
understanding dynamical phases and their transitions, and
even more importantly, the very question of thermal
equilibrium in quantum statistical mechanics. In the non-
interacting limit, the single-particle orbitals of a fermionic
system throughout the energy spectrum can be all localized
[1], all extended, or exhibit a single-particle mobility edge
(SPME) [2–13] separating localized and extended states.
The SPME is in fact thought to be the generic situation for
three-dimensional disordered systems. Moreover, the exist-
ence of a SPME in an incommensurate one-dimensional
(1D) system has recently been predicted and experimen-
tally observed in a quasiperiodic optical lattice [14,15].
In the presence of interactions, we can further introduce

the notion of ergodicity for a many-body eigenstate since a
closed quantum system can thermalize according to the
eigenstate thermalization hypothesis (ETH) [16–18]. Since
the critical energies for the localization and thermalization
transitions do not necessarily coincide, more complicated
phases can occur other than all eigenstates being many-
body localized (MBL) [19–41], i.e., localized and non-
ergodic, or all obeying the ETH, i.e., extended and ergodic.
In particular, recent numerical studies have found that in
systems subject to a family of incommensurate potentials that
exhibit SPME, there exists a finite energy window wherein
the eigenstates are nonergodic but extended [34–36]. Such an
intriguing intermediate phase was subsequently named the
nonergodic metal (NEM) [35].
The common strategy taken by prior studies to identify

NEM [34–36] was to detect localization and ergodicity by
different diagnostics. This was necessary since different
phases are naturally more sensitive to different diagnos-
tics, which is also true in the experimental studies of

MBL [42–45]. The problem with this strategy is that these
ad hoc different diagnostics may not necessarily be
equivalent with respect to their sensitivity to various
phases. For instance, while entanglement entropy and
the variance in local particle number fluctuations were
used to diagnose localization and ergodicity in Ref. [35],
the inverse participation ratio and the return probability
were used in Ref. [34] along with several other diagnos-
tics. Since the energy window for NEM is set by the two
transition energies corresponding to the two distinct
diagnostics, the phase space or even the existence of
NEM itself can largely depend on the combination of the
diagnostics used, which is unsatisfactory. In order to
definitively establish NEM as a phase with a finite phase
space in the phase diagram, it is imperative to develop an
approach that can distinguish MBL, NEM, and the
thermal states (ETH states) using a single diagnostic.
The entanglement spectrum (ES) [46] is an appealing

choice in this context because of the following reasons.
First, the ES contains more information about the eigen-
states than entanglement entropy due to the absence of the
tracing procedure. Second, recent studies have identified
the ES as a sensitive probe for MBL and ETH phases
[47–51]. However, the complexity of the spectral pattern
in an ES makes it practically difficult to extract relevant
features for discerning eigenstate properties.
Machine learning, a powerful tool for complex pattern

recognition, has recently been introduced to condensed
matter physics and raised tremendous interest in the
community [52–69]. In particular, supervised learning
has been used as a successful numerical tool to study
various phases and their transitions [52–55]. One such
application is to identify the phase boundaries throughout
the parameter space using a neural-network (NN) classifier
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trained with data obtained from well-known limits deep in
each phase [48,52,70,71]. Such an approach, however,
relies on a priori knowledge of all existing phases in the
parameter space, which is not always available. To the best
of our knowledge, studies in this direction have so far been
limited to models where the existence of all phases are well
established without controversies, which is not suitable for
our goal of investigating the presence of the controversial
NEM phase whose very existence as an intermediate phase
between ETH and MBL remains open.
In this Letter, we develop a general NN approach

targeting a different goal from that of conventional super-
vised learning to examine the existence of a controversial
phase. Using this novel approach, we investigate the
dynamical phases in a prototype incommensurate 1D lattice
model [35] emphasizing the existence of the NEM phase.
Using the ES as the input data, we show that a three-layer
NN is able to unambiguously identify a distinct new phase
between the MBL and ETH phases with high confidence.
Our results provide the strongest numerical evidence so
far for the existence of a new phase in incommensurate
systems that is likely the predicted NEM in Ref. [35] and
also usher in a general machine-learning-based new tech-
nique for identifying novel phases of matter which may not
be accessible by conventional techniques.
Model and method.—The model we study is the gener-

alized Aubry-Andre (GAA) model [13]H ¼ H0 þHint in a
1D system of size L, where

H0 ¼
XL

j¼1

�
−tðc†jcjþ1 þ H:c:Þ

þ 2λ
cosð2πqjþ ϕÞ

1 − α cosð2πqjþ ϕÞ nj
�
;

Hint ¼ V
XL

j¼1

njþ1nj: ð1Þ

Here, nj ¼ c†jcj is the fermionic number operator at site j, V
is the nearest-neighbor interaction strength, and t is the
nearest-neighbor hopping strength as well as the energy unit
throughout the article. The second term in H0 describes an
incommensurate potential with strength 2λ, an irrational
wave number q ¼ 2=ð1þ ffiffiffi

5
p Þ, a randomly chosen global

phase ϕ, and a dimensionless parameter α ∈ ð−1; 1Þ.
The α ¼ 0 limit of Eq. (1) corresponds to the pristine AA

model [72], which does not have a SPME. For the general
α ≠ 0 case, however, a SPME generally exists at V ¼ 0.
Here we choose λ ¼ 0.3 and α ¼ −0.8 to achieve a
comparable number of localized and extended single-
particle orbitals at V ¼ 0 [35]. As reported in Ref. [35],
the interacting many-body spectrum at some fixed λ may
exhibit the NEM phase in a finite energy window EL <
E < ET , whereas the MBL and ETH phases have energies
E < EL and E > ET , respectively. The important question
we study in this work using our NN approach is the

existence of the NEM phase in the interacting GAA model
in the intermediate energy window.
We now describe how we build an M-phase classifier

based on a candidate phase diagram that containsM phases,
which serves as the building block of our NN approach.
The network structure of the classifier contains an input
layer, a hidden layer, and an output layer [Fig. 2(a)]. The
size of the input layer is determined by the size of the input
data, and the hidden layer contains 30 sigmoid neurons.
The output layer contains N softmax neurons, and each
produces a real number pi ∈ ½0; 1�; i ¼ 1;…;M, withP

M
i¼1 pi ¼ 1. Thus, each output pi can be viewed as the

confidence the classifier identifies the input data as belong-
ing to the phase i. We generate the input data by calculating
the ES of the interacting GAA model using exact diago-
nalization with a varying global phase ϕ and a fixed particle
number N ¼ L=6. The training data set for each phase i
is generated from one energy bin [73] labeled by Ei,
ði ¼ 1;…;MÞ deep in each phase i according to the
assumed phase diagram we have in mind.
During the training process, we feed the training data to

the input layer and allow the all-to-all couplings between
the adjacent layers to evolve from randomly chosen initial
values according to the log-likelihood cost function. We
then test the trained network with another independent set
of testing data obtained in the same way. If the training is
successful, which we define as obtaining a testing accuracy
over 99%, we feed the trained network with the ES from all
energy bins throughout the spectrum in order to obtain the
resulting phase diagram, which contains energy-resolved
confidence piðEÞ, i ¼ 1;…;M.
The NN approach.—We develop a recursive procedure

that consists of systematically building different classifiers
starting from a candidate phase diagram to be tested, and
telling from the outputs of these classifiers the correct
number of phases. The technique is powerful enough to
identify both falsely positive (incorrectly identifying a
nonexisting phase) and falsely negative (not identifying
an existing phase) cases. Here we first demonstrate our
general approach using a toy example, where we associate
each “phase” with a set of images of a handwritten digit
from the MNIST database [74], a canonical source of input
data sets for benchmarking machine learning algorithms.
To better connect to the dynamical phase diagram of interest
in this work, we present the results of this example by “phase
diagrams” consisting of different digits. To mimic the
continuous tuning parameter in usual phase diagrams, we
divide the testing data for each digit into groups and plot the
output of the network against the group labels.
First imagine a case where the studied phase space

contains only phases A and B, but we falsely assume that
a phase C exists in between. To test our assumption, we start
by training a three-phase classifier with data obtained from
small regimes within the phase spaces of A, B, as well as a
phase space that we thought to be C but is actually a part of

PHYSICAL REVIEW LETTERS 121, 245701 (2018)

245701-2



B. Two scenarios can happen in this case. First, for simpler
phases with a low variance within each phase, the training
procedure itself would fail with low testing accuracy. Our
example based onMNIST data falls in this category. Second,
for more complicated phases with a large variance within
each phase, the training process could be successful, but
the regime identified as phase C with a high confidence
(pC → 1) would be negligible or (at best) similar in size to
the small regime where the training data for C were
collected. This is because instead of capturing universal
properties of a phase, the network is actually trained to
capture detailed features tied to the small training regime.We
show a schematic in the upper panel of Fig. 1(a) illustrating
this second scenario, where the narrowly peaked confidence
curve pC and the apparent confusion between B and C
suggests that there are fewer phases in reality than what we
assumed. This is in contrast to the phase diagram produced
by a two-phase classifier for A and B [bottom panel in
Fig. 1(a)] that matches the reality, where each curve exhibits
high confidence over a substantial phase space.
The above guidelines for identifying a falsely assumed

phase can be further exploited to identify hidden phases.
Now imagine another case where a phase C exists between

phases A and B, but we only know of the latter two.
To avoid overlooking any hidden phases, we perform the
following recursive three-step procedure. Step I, we train a
two-phase classifier for phases A and B. Step II, we apply
the previous guideline to the resulting phase diagram [top
panel of Fig. 1(b)] and find that neither of the confidence
curves pA and pB is narrowly peaked, which indicates that
both A and B phases exist. Step III, we assume some hidden
phase C to exist within the regime where neither pA nor pB
is high, and build a three-phase classifier accordingly. By
reapplying step II to the resulting phase diagram [bottom
panel of Fig. 1(b)], we again find that all three phases exist.
When we further repeat step III to build a four-phase
classifier assuming some phaseD to exist between A and C
or between C and B; however, the low testing accuracy in
the training process suggests that phase D does not exist.
We thus conclude that there exist only three phases A, B,
and C as shown in the bottom panel of Fig. 1(b).
Results.—We now employ our NN approach to study the

phase diagram of the GAA model in a system with L ¼ 30
sites, fixed potential strength λ ¼ 0.3, and interaction
strength V ¼ 1. First for step I, we assume that the
many-body spectrum only consists of MBL near the band
edges and ETH in the midspectrum, and no additional
phases in between. Based on this assumption, we train a
two-phase classifier with data collected from energies
deep in the MBL (E1) and ETH (E3) phases [Fig. 2(c)],
respectively. We find that while the resulting phase diagram
[Fig. 2(b)] shows two substantial energy regimes identified

(a) (b)

FIG. 1. Schematic results from applying our NN approach to
toy examples identifying (a) a falsely assumed phase C in a
system with only two phases A and B, and (b) an unnoticed
hidden phase C in a system with three phases A, B, and C.
(a) shows schematics illustrating situations described in the text,
where the upper panel shows the falsely positive result produced
by a three-phase classifier for A, B, and C, and the lower panel
shows the correct result produced by a two-phase classifier for A
and B. (b) shows results from calculation using MNIST data as
input, where we associate A, B, and C with digits 1, 6, and 3,
respectively. The upper panel shows the falsely negative result
produced by a two-phase classifier for only A and B. The lower
panel shows the correct result produced by a three-phase
classifier for A, B, and C. Each tick on the horizontal axis
corresponds to a group of 160 MNIST images of the associated
digit. In both plots, pi is the confidence for identifying certain
input data as phase i ¼ A, B, C, and the horizontal axis with
background color blue, yellow, and red correspond to phase A, B,
and C, respectively.

(a)

(c) (d)

(b)

FIG. 2. (a) The schematics of the building block in our NN
approach, a general M-phase classifier for phase i ¼ 1;…;M.
The phase diagrams of the GAA model with L ¼ 30 sites,
potential strength λ ¼ 0.3, and interaction strength V ¼ 1 pro-
duced by (b) a two-phase classifier, (c) a three-phase classifier,
and (d) a four-phase classifier. Here, piðEÞ is the energy-
dependent confidence at which the corresponding classifier
identifies the eigenstates to be in each of the studied phases.
The training data for the classifiers are collected from energy bins
E1;…; E4 and Ẽ4 labeled in (c) for corresponding phases as
discussed in the text.

PHYSICAL REVIEW LETTERS 121, 245701 (2018)

245701-3



as MBL and ETH, respectively, there is also a substantial
regime in between where the network does not show high
confidence in identifying it as either.
Next for step II, we investigate whether there is a third

phase X hidden in this transition regime by a three-phase
classifier for MBL, ETH, and this phase X which we
assume to exist. To do so, we train a three-phase classifier
for MBL, ETH, and X with data collected from energy bins
E1, E3, and E2 [Fig. 2(c)], respectively. We then benchmark
it against the well-known AA model and find the classifier
to be reliable [75]. Applying this three-phase classifier to
the GAA case, we find three substantial energy regimes
identified as MBL, phase X, and ETH, respectively, with
a high confidence as energy increases from the edge to the
middle of the spectrum [Fig. 2(c)]. We emphasize that such
a result strongly supports the existence of this third phase X
under the lens of the ES since (i) the training process is
successful with a testing accuracy over 99%, and (ii) the
width of the identified phase X regime (with over 95% con-
fidence) is 7 times wider than the size of the energy bin
from which the training data for phase X were produced.
Before moving on to step III, we first comment on the

properties of this phase X. First note that the phase diagram
obtained from the three-phase classifier using a single
diagnostic qualitatively agrees with that obtained using two
diagnostics in Ref. [35]. In particular, the energy range for
phase X in our results is slightly smaller but fully contained
in that of NEM found in Ref. [35]. Therefore, the phase X
we found here is most likely nonergodic while metallic;
hence we will refer to this intermediate phase as NEM in
the following. Moreover, the ES spectral pattern of the
eigenstates we identified as NEM is qualitatively different
from that of the MBL and ETH states [75]. This indicates
that instead of being merely a mixture of MBL and ETH
states over a small energy window, the NEM states are
actually distinct types of eigenstates that are distinguishable
from the MBL and ETH states by ES patterns.
Finally, for step III, we examine if we overlooked any

additional hidden phases in the MBL-to-NEM and NEM-
to-ETH transition regimes. We first train a four-phase
classifier for MBL, NEM, ETH, and a fourth phase Y
between MBL and NEM with data collected from energy
bins at E1, E2, E3, and E4, respectively [Fig. 2(c)]. From the
resulting phase diagram in Fig. 2(d), we find that the
confidence curve of phase Y narrowly peaks at the training
bin E4, and no energy regime can be identified as phase Y
with confidence over 90%. These observations suggest that
phase Y does not exist, in sharp contrast to the results from
the three-phase classifier, where we found a wide energy
regime identified as NEM with high confidence [Fig. 2(a)].
We also find that there exists no hidden phases between
NEM and ETH by performing a similar calculation
replacing phase Y with a phase Ỹ between NEM and
ETH, where the training data are collected from Ẽ4 [75].
Thus, we predict that the actual phase diagram is the one

produced by the three-phase classifier in Fig. 2(c), which
supports the existence of NEM but no additional hidden
phases.
After establishing the existence of NEM in the L ¼ 30

system, we further investigate its stability under finite-size
effects. We build a three-phase classifier for the L ¼ 24
interacting GAA model, benchmark it against the interact-
ing AA model [75], and use it to study the resulting phase
diagram. We find that the regime identified as NEM with
over 95% confidence increases by 40% as L increases from
24 to 30 [Fig. 3(b)]. Moreover, for the L ¼ 18 case, we
even fail to achieve a successful training process under a
reasonable hyperparameter scan. The above observations
are both consistent with the NEM regime becoming more
robust as L increases. Furthermore, although studying any
interacting systems with size L > 30 is not feasible under
our current supercomputer resources, a finite-size analysis
in the noninteracting limit can provide additional hints on
the robustness of the NEM phase [75]. Based on our
interacting and noninteracting studies, we conclude that it
is extremely unlikely that our unbiased identification of the
NEM phase as distinct from MBL or ETH phases can be a
finite-size artifact.
Conclusion.—We have developed a neural-network-based

method for determining the existence of a novel dynamical
quantumphase nearmany-body localization transition,which
is an application of supervised machine learning beyond
locating phase boundaries among existing phases. Our
method allows one to detect hidden phases or, conversely,
identify false hypothetical phases by systematically building
different neural-network classifiers. By using this technique,
we have established that interacting 1D incommensurate
systems with single-particle mobility edges may contain a
still-not-very-well-understood nonergodic but metallic phase
in the midenergy spectrum. Such a phase has an ES spectral
pattern very distinct from that of MBL and ETH. We have
shown that the technique is highly reliable with confidence
levels for various identified phases reaching > 99% even
usingESdata from systems rathermodest in size.Wemention
that our method is related to Ref. [53] in that the requirement
of a prior knowledge of the phase diagram is minimized.
Meanwhile, our technique focuses on uncovering hidden

FIG. 3. The comparison between the L ¼ 30 (upper) and
L ¼ 24 (lower) phase diagrams of the GAA model focused on
the NEM regimes. Here the parameter choices are the same as
those in Fig. 2.

PHYSICAL REVIEW LETTERS 121, 245701 (2018)

245701-4



phases in systems with multiple phases. Our technique is
general and should be applicable to both equilibrium and
nonequilibrium quantum problems.
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