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Preferential Sampling of Elastic Chains in Turbulent Flows
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A string of tracers interacting elastically in a turbulent flow is shown to have a dramatically different
behavior when compared to the noninteracting case. In particular, such an elastic chain shows strong
preferential sampling of the turbulent flow unlike the usual tracer limit: An elastic chain is trapped in the
vortical regions. The degree of preferential sampling and its dependence on the elasticity of the chain is
quantified via the Okubo-Weiss parameter. The effect of modifying the deformability of the chain via the

number of links that form it is also examined.
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The development of Lagrangian techniques, in experi-
ments and theory, have lead to major advances in our
understanding of the complexity of turbulent flows, espe-
cially at small scales [1-3]. What makes this possible is the
use of tracer particles which uniformly sample the flow
and, hence, access the complete phase space in which the
dynamics resides. This feature of tracers depends crucially
on the assumption that the particles remain inertialess and
pointlike. When some of these assumptions are relaxed, it
may lead to dissipative particle dynamics and preferential
sampling of the structures in a flow. This is, for instance,
the case for heavy, inertial particles, which show small-
scale clustering and concentrate away from vortical regions
[4-10]. Various phenomena can influence the properties of
inertial clustering in turbulence, such as gravity [11,12],
turbophoresis [13,14], or the non-Newtonian nature of the
fluid [15]. Preferential sampling in turbulent flows may
also emerge as a result of the motility of particles, as in the
case of gyrotactic [16], interacting [17], or jumping [18]
microswimmers.

We now propose a novel mechanism for preferential
sampling in turbulent flows which is induced by exten-
sibility. A simple model of an extensible object which
retains enough internal structure is a chain of tracers with
an elastic coupling between the nearest neighbors. We
show, remarkably, that turning on such elastic interactions
amongst tracers leads to very different dynamics: Unlike
the case of noninteracting tracers, an elastic chain prefer-
entially samples vortical regions of the flow. We perform a
systematic study of this phenomenon and quantify, via the
Okubo-Weiss parameter, the level of preferential sampling
and its dependence on the elasticity and deformability of
the chain.

Harmonic chains have been at the heart of several
important problems in the areas of equilibrium and non-
equilibrium statistical physics. These have ranged from
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problems in crystalline to amorphous transitions [19],
electrical and thermal transport both in and out of equilib-
rium [20], as well as understanding the structural properties
of disordered and random systems [21]. Given the ubiquity
and usefulness of the elastic chain, it is surprising that the
effect of a turbulent medium on long chains has not been
studied as extensively as in other areas of nonequilibrium
statistical physics.

There is another reason why this study is important. The
last decade or more has seen tremendous advances in our
understanding of heavy inertial particles and their dynam-
ics. These were helped primarily by the pioneering results
on the issue of preferential concentration, which plays a
dominant role in every aspect of turbulent transport. In
contrast, similar studies of extended objects such as fibers
are recent [22-25], even though they are just as important
and commonplace in nature and industry. However, the
effect of elasticity, which is intrinsic to extensible objects
(just as inertia is to finite-sized particles), in determining
their dynamics in a turbulent flow is an open question. In
this Letter, we settle this question through a model which is
amenable to detailed numerical simulations.

We generalize a well-studied model for polymeric
chains, the Rouse model [26-28], which consists of a
sequence of N, identical beads connected through (phan-
tom) elastic links with their nearest left and right neighbors;
the two end beads are free. Starting from Newton’s
equation for a single bead and incorporating the effect
of the fluid Stokesian drag, elastic interactions, and thermal
noise, the dynamics is most conveniently expressed in
terms of the center of mass of the chain X, =(x;+---+xy, )/
Nj (xy,...,xy, denote the positions of the beads) and
the separation vector r; =x; . —x; (j=1,....,N, —1)
between the jth and (j + 1)th bead. For arbitrary r;, the
general form of the equations of motion of such a chain in a
velocity field u(x, 7) in the absence of inertia are
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where f; = (1—|rj|*/rs)™" are the standard FENE
(finitely extensible nonlinear elastic) interactions [26],
which are linear for small separations and diverge
quadratically for larger r; to ensure that interbead separa-
tions remain bounded by the maximum length r,,. Thus, at
any given instant in time, the length of the chain
R= Z?’L rj <L,, where L, = N;r, is the maximum
or contour chain length (N, = N, — 1 denotes the number
of links). The nonlinear elastic links are further charac-
terized by their relaxation time z, which, in turn, determines
the effective relaxation time 7, = (N, + 1)N,7/6 of the
chains [29]. The thermal fluctuations on each bead are
modeled by independent white noises &;(7) (i = 1, ..., N}),
whose amplitude r, sets the equilibrium length of the
chain in the absence of flow. Although the effect of thermal
fluctuations on the motion of the center of mass is
negligible in a turbulent flow, their effect on the separation
vectors is essential: Thermal fluctuations prevent the chain
from collapsing into a pointlike particle and, hence, a tracer.
Finally, interbead hydrodynamic interactions are ignored.

We note that such a generalized model ensures that when
the separations between the beads are small enough for the
velocity differences to be approximated as u(x;..t)—
u(x;.t)xA-r;, where A = Ogu; is the velocity gradient
tensor, then Egs. (1) reduce to the Rouse model with FENE
links smaller than the viscous scale at all times. This model
is commonly used in simulations of polymer chains in
turbulent flows [29-33]. By considering the full velocity
difference between adjacent beads, Eqs. (1) describe an
elastic chain that may extend into the inertial range of
turbulence or even beyond the integral scale [see Refs. [34—
37] for an analogous generalization of the dumbbell
(N, = 2) model].

What is the effect of a turbulent velocity field # on the
motion of such chains? To answer this, we solve, by using a
pseudospectral method with a 2/3 dealiasing rule, the two-
dimensional Navier-Stokes equation on a square grid with
10242 collocation points and 2z periodic boundary con-
ditions. We drive the system to a homogeneous and isotropic,
turbulent, statistically steady state through an external,
deterministic force f = —Fk cos(k,x) (F is the amplitude
and k the energy-injection scale in Fourier space, which sets
the typical size of the vortices £, = 27rk;1). Forcing at small

wave numbers ensures that the vortices are fairly large: This
allows us to clearly illustrate the issues of preferential

sampling which are central to this work. We use a small
Ekmann-friction coefficient 4 (in addition to a coefficient
of kinematic viscosity v) to prevent pile up of energy at
the large scales due to inverse cascade. Consequently,
the turbulent flow is in the direct-cascade regime.
The definition of £, also allows us to characterize the
stretching ability of the flow in terms of the dimensionless
Weissenberg number Wi = 7 ,,/1;, Where t, = £/ V2E
is the turnover timescale of the large vortices (E is the mean
kinetic energy of the flow).

The temporal evolution of the chain [Eqgs. (1)] is done by
a second-order Runge-Kutta scheme augmented by a
rejection algorithm [28] to avoid numerical instabilities
due to the divergence of the nonlinear force for |r|
approaching r,,. A bilinear scheme is used to interpolate,
from the Eulerian grid, the fluid velocity at the typically
off-grid positions of the beads [38,39]. In order to observe
the regime of preferential sampling, we choose parameters
for the chain which ensure that its equilibrium length in a
quiescent flow is similar to the enstrophy dissipation scale,
while 7y < L,, < 2.

This model of an elastic chain in a turbulent flow is the
ideal setting, theoretically and numerically, to investigate
the natural interplay between the relative importance of
Lagrangian (uniform) mixing and the elasticity of the links.
It is this competing effect that leads to a surprising
preferential sampling of the flow by the chain, hitherto
not observed.

It is important to stress here that we chose two-
dimensional turbulent flows to take advantage of their
long-lived vortical structures, which help to convincingly
illustrate this new phenomenon of preferential sampling. We
have checked in several simulations that this phenomenon
persists even in three-dimensional turbulence, becoming in-
creasingly prominent as the Reynolds number is raised and
intense vortex filaments proliferate. However, as in the case of
preferential concentration of inertial particles, the effect is
most convincingly brought out in two-dimensional flows.

To illustrate this phenomenon, we begin by randomly
seeding 5 x 10* chains into the flow and study their
evolution in time for different Wi. (We evolve a large
number of chains simultaneously for the purpose of
visualizing their sampling behavior and for obtaining good
statistics of the chain dynamics; we do not describe the
collective motion of an ensemble of chains, which would
interact with each other hydrodynamically or by direct
contact.) In Fig. 1, we show the center-of-mass positions at
an instant of time overlaid on the vorticity field of the
turbulent flow for Wi = 0.04 and Wi = 0.9. It is immedi-
ately apparent that for the case of small elasticity the chains
behave like tracers and distribute evenly [Fig. 1(a)].
However, for larger Wi, there is a preferential sampling
of the vortical regions [Fig. 1(b)].

Figure 1(c) demonstrates the coupling between the
translational and the extensional dynamics of the chain
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FIG. 1.

Representative snapshots showing the positions of a subset of chains (N; = 9 and L,, = 4) overlaid on the vorticity field of the

carrier turbulent flow (with #; = 2 and ¢, = 2.3). Panels (a) and (b) show the centers of mass of the chains for Wi = 0.04 and Wi = 0.9,
respectively. Panel (c) shows the entire chains for Wi = 0.9. Parameter values: v = 107%, y = 1072, and F, = 0.2.

by showing a snapshot in which the entire chains, and not
just the centers of mass, are overlaid on the vorticity field.
This figure emphasises the strong correlation between the
positions of elongated chains with regions of low vorticity,
where the straining flow stretches out the chains. In
contrast, the chains that encounter vortices tend to curl
up and contract to a much smaller size. These strikingly
different phenomena are best seen in a video of the time
evolution of the chains [40]. All of this suggests the
following picture: A stretched chain is more likely to leave
straining zones and coil up in vortical regions.

The above observations can be quantified via a Lagrangian
approach by measuring the statistics of the extension R and
the Okubo-Weiss parameter A along the trajectories of the
centers of mass of the chains. We recall that, for incom-
pressible flows, A = det A/{w?) = (0* — 6?)/4{(w?) (here
rescaled by the mean enstrophy (©?)), where @ = V x u is
the vorticity and o is the strain rate given by ¢* = 2S5;;S;;
where S = (A + A7) /2. The sign of A uniquely determines
the local flow geometry: For positive A, the flow is vortical;
for negative A, itis extensional [38,41]. Values of A near zero
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correspond to either a quiescent or a shearing flow, which has
comparable amounts of vorticity and straining.

In Fig. 2, we show the Lagrangian probability distribu-
tion function (PDF) of A [Fig. 2(a)] and R [Fig. 2(b)] for
different values of Wi. The A distribution for tracers
(Wi = 0) is also shown for comparison (its positive skew-
ness is a consequence of the strongest velocity gradients
occurring in intense vortical zones [42—44]). We find strong
quantitative evidence that increasing elasticity leads to a
chain preferentially sampling vortical regions of the flow
[Fig. 2(a)]. This is accompanied by an increase in the
probability of highly stretched configurations [Fig. 2(b)].

The key to understanding the phenomenon of preferen-
tial sampling lies in the correlation between the transla-
tional and the extensional dynamics of a chain. This is
quantified through the joint PDF P(R, A), which shows that
when its center of mass is in vortical regions, a chain is in a
contracted state (Fig. 3). The velocity terms in Eq. (1a) can
therefore be Taylor expanded about X, (z), and Eq. (1a)
reduces to the equation of motion of a tracer. Thence, the
center of mass follows the flow and remains trapped in the
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FIG.2. Lagrangian PDFs of (a) the Okubo-Weiss parameter A and (b) the scaled lengths of the chains R/, for different values of Wi.
Parameter values: £, = 1.25,1; = 1.35,L,, =3.75,N;, =9, v =107, 4 = 1072, and F, = 0.2.
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FIG. 3. Joint PDF of A sampled by the centers of mass of the

chains and R/ff for Wi = 1.22 and (inset) Wi = 0.12.

vortex. Contrastingly, away from vortical regions, i.e., in
straining or shearing regions, an extensible chain is highly
stretched (Fig. 3). As time proceeds, a large-Wi chain
stretches to lengths so long that eventually it is unable to
follow the rapidly evolving straining zones. On departing
from these zones, such a chain is likely to encounter a vortex
and begin to coil up (seen clearly in the video [40]). The links
of the chain that enter the vortex shrink and follow the
rotational flow, eventually leading to the entrapment of the
entire chain within the vortex. A stiff chain (small Wi),
which remains short in straining zones, samples the negative
values of A more, leading to annular contours (Fig. 3, inset).

The stretching out of a chain in straining zones may thus
be seen as a precursor to its entrapment inside vortices. This
explains why strong preferential sampling of vortices
occurs only when Wi is so large that there is a significant
probability for chains to be stretched beyond ¢, (compare
the cases of Wi = 0.49 and Wi = 1.22 in Fig. 2). On the
other hand, if the maximum length L,, < ¢/, then one
would expect this mechanism to fail and the chain to
uniformly sample the flow for all Wi. We have confirmed
this hypothesis in our simulations but do not show the
results for brevity.

The results so far suggest a complete picture for the
dynamics of an elastic chain in a turbulent flow: A chain
with a sufficient degree of elasticity—defined as the ratio of
elastic and fluid timescales—preferentially samples the
flow. But is this effect truly independent of the character-
istic length scales present in the system? The short answer
is no, and the ability of a chain to preferentially sample the
flow is determined by the relative magnitudes of its typical
interbead separation (which for a fixed value of L,, depends
only on N,) and the characteristic fluid length scale £;.

For large values of Wi, as we have seen, the typical
interbead separation approaches L,,/N;. For the results
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FIG. 4. (A) vs Wi for different values of ® = L,,/(N,¢;); we

use Ny =9, 4, 2, and 1 (dumbbell), while keeping L,, = 3.75
and #; = 1.25 fixed. Inset: The variance of R/ ; vs Wi. The flow
parameters are the same as those in Fig. 2.

reported so far, N, was such that L, /N, < ;. As N,
decreases, however, we will eventually obtain characteristic
interbead separations of the order of L,,/N; > £;. In this
setting, typically, no two neighboring beads will be able to
reside in a vortex simultaneously. Hence, the mechanism
for preferential sampling will fail, and the chain will start
sampling the flow uniformly once more. This suggests that,
apart from the role of elasticity, the dynamics of a chain for
large values of Wi ought to depend on a second dimension-
less number ® = L,,/(N,¢;), such that for ® > 1 there
should be uniform sampling, while for ® < 1 there should
be preferential sampling.

Direct evidence for this is presented in Fig. 4, which
shows the mean value of the Okubo-Weiss parameter (A) as
a function of Wi for different values of ®. For smaller ®,
there is an increase in (A) that eventually saturates for
Wi > 5. However, for larger values of @, (A) increases
initially [45]—indicating preferential sampling of the
vortical regions of the flow—before decreasing again to
reflect uniform sampling (see video [46]). The chain,
however, continues to stretch as the elasticity increases
for all values of @, and its mean square extension does not
show any nonmonotonic behavior (inset of Fig. 4). At large
Wi, a chain is indeed typically longer for larger values of @
owing to the reduced level of preferential sampling of
vortices and correspondingly lower probability of being in
a contracted state.

Figure 4 lends itself to an intuitively appealing picture of
the motion of a chain. For a given turbulent flow (char-
acterized by t; and ¢), whether or not a chain of a given
elasticity and maximum length L,, may coil—and, hence,
preferentially sample—depends on the number of links
which form the chain. In particular, for a highly extended
chain (large Wi), decreasing the number of links limits the
ability of the chain to coil up into vortices. This result
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highlights the importance of deformability of extensible
chains. In our study, we have considered a freely jointed
chain. However, the bending stiffness of the chain may be
modeled by introducing a potential force that is a function
of the internal angle between neighboring links and restores
them to an antiparallel configuration [26]. Such a stiffness
would prevent the chain from coiling up and, therefore,
would reduce preferential sampling in a manner analogous
to that of increasing @ in our freely jointed model.

The elastic chain is a simplified model for various
physical systems, which include, infer alia, fibers, micro-
tubules, and algae in marine environments. Such systems,
of course, present additional properties that were not taken
into account here, such as the inertia and the stiffness of the
system, hydrodynamic and excluded-volume interactions
between different portions of it, and the modification of the
flow generated by the motion of the system. These effects
will certainly change quantitative details of the dynamics,
but the mechanism at the origin of preferential sampling
identified here is of general validity. It indeed relies on a
few basic ingredients: The system must be extensible, its
equilibrium size should be smaller than £, and its contour
length greater than £y.

Finally, we cannot avoid mentioning that the preferential
concentration of inertial particles through dissipative
dynamics is completely different from the mechanism that
we report here. Hence, it is tempting to investigate the
interplay between the competing effects of inertia and
elasticity in future studies of inertial extensible objects in
turbulent flows.
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