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Imaging systems’ performance at low light intensity is affected by shot noise, which becomes
increasingly strong as the power of the light source decreases. In this Letter, we experimentally
demonstrate the use of deep neural networks to recover objects illuminated with weak light and
demonstrate better performance than with the classical Gerchberg-Saxton phase retrieval algorithm for
equivalent signal over noise ratio. The prior contained in the training image set can be leveraged by the deep
neural network to detect features with a signal over noise ratio close to one. We apply this principle to a
phase retrieval problem and show successful recovery of the object’s most salient features with as little
as one photon per detector pixel on average in the illumination beam. We also show that the phase
reconstruction is significantly improved by training the neural network with an initial estimate of the object,
as opposed to training it with the raw intensity measurement.
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Many imaging systems only yield partial or distorted
information about the object being imaged. Typical causes
include loss of spatial frequencies, lack of phase informa-
tion, unknown scatterers in the optical train, aberrations,
and noise in the illumination or detection. In these
situations, the mathematical operator describing the imag-
ing system becomes ill posed and usually requires regu-
larization. A regularizer is an operator designed to favor
solutions that match our prior knowledge about the object,
if any. The choice of the regularizer itself is often arbitrary
and based on practical experience. Recently, deep neural
networks (DNNs) have attracted much attention in the
field of computational imaging, for they provide a way to
regularize a problem adaptively. As of today, DNNs have
been proven efficient solvers in many imaging applications
such as deblurring [1], undersampled imaging [2], ghost
imaging [3], phase retrieval [4–9], adaptive illumination
microscopy [10], adaptive optics [11], and optical tomog-
raphy [12,13]. For consumer cameras operating with
broadband, spatially incoherent light of flux as low as
∼0.1 lx at the camera, a DNN can recover images with
significant detail [14]; also for phase retrieval with coherent
illumination, numerical results show that DNNs outperform
classical methods on noisy data [7].
In this Letter, we demonstrate experimentally for the first

time, to our knowledge, that DNNs can solve a coherent
phase retrieval problem affected by strong shot noise at
various levels. In situations where the light source is weak,
the detection signal to noise ratio (SNR) is ultimately
limited by the quantized nature of light. Because of its
fundamental nature, shot noise cannot be avoided and
regularization schemes must be devised to handle it. As the
noise becomes more significant, reconstruction algorithms’
performance in general deteriorates; this is the regime

where we expect the biggest payoff from the DNN,
assuming that it has been successfully trained to recover
the object features that best explain the observed signal
distribution. Best results are obtained for objects within
restricted classes, i.e., sharing similar constrained features,
or equivalently having a sparse description in some domain
of appropriately chosen basis functions. To illustrate this,
we used two sets of databases to train DNNs: a relatively
restricted class of integrated circuit (IC) layouts, and the
more general ImageNet [15] image data set. We found that
the DNN reconstructions attain better visual quality for IC
layouts at low photon counts (1–2 per pixel per frame) than
for ImageNet.
DNNs represent a very versatile method for inferring the

relationship between objects and their corresponding mea-
surements through the imaging system. A DNN is typically
trained on a set of examples, each example containing
the ideal image of the object (the ground truth) and a
corresponding measurement. The DNN can be viewed as
an operator mapping the measurement (or a known function
of the measurement) to the desired image. The internal
parameters of the DNN are adjusted to minimize a loss
function that describes how close the image is to the ground
truth. After the training, examples from a test set, which
have not been used in the training phase, are given to the
DNN, which then outputs the reconstructed images.
The phase retrieval problem addressed in this work can

be written, for an optically thin object, as

gðx; yÞ ¼ jFL½uincðx; yÞtðx; yÞejfðx;yÞ�j2; ð1Þ

where ðx; yÞ are the lateral coordinates, g is the intensity
measurement in the detector plane, t and f are, respectively,
the modulus and phase of the field immediately after the
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object, uinc the incident field in the object plane, and FL the
Fresnel propagation operator over a distance L. In what
follows, we assume that the object modulates only the
phase, therefore tðx; yÞ ¼ 1, and we define g ¼ HðfÞ. The
optimization problem implicitly solved by the DNN can be
written as

f̂ ¼ argmin
f

ψfHðfÞ;g;ΘðfÞg; ð2Þ

where ψ is the functional to minimize and Θ the regularizer
operating on f, i.e., imposing constraints on the solution.
In a classical optimization procedure, the regularizer would
be chosen ad hoc. Instead, here we let the DNN discover a
regularization adapted to the specific class of objects we
train with.
In this Letter, the loss function to be minimized is chosen

as the negative Pearson correlation coefficient (NPCC)
defined in the Supplemental Material [16]. The use of the
NPCC as a loss function, as opposed, e.g., to the mean
square error, proved to be a better metric for DNN training
in the context of phase retrieval, especially with sparse
objects [5].
For our phase retrieval problem, one possibility is to train

the DNN with ðfk;gkÞ couples, k being the index within the
training set. We refer to this approach as the “end-to-end”
method as it makes use of the end points of the optical
system, i.e., the object phase f and raw intensity measure-
ment g. It should be noted that, in the end-to-end method,
in addition to the regularization, the DNN carries the
burden of learning the law of Fresnel propagation. Since
Fresnel propagation is a well characterized physical law, it
seems inefficient to have the DNN being optimized, even
partially, to explain it. Some knowledge about the physical
laws has to be included in the training process in order for
the DNN to focus on learning a regularizer.
The phase retrieval problem described in Eq. (1) cannot

be inverted directly, simply because the detector is not
sensitive to phase. Therefore, there is no unique way of
disentangling the contribution of the physics and the
contribution of the noise (or any other stochastic process
involved). However, the well-known Gerchberg-Saxton
(GS) [17] and the gradient descent algorithms for phase
retrieval provide a useful insight. Even though the phase is
not known in the detector plane, an approximate phase can
be assumed and used to project the field back to the object
plane using the inverse Fresnel operator. In this Letter, we
associate the phase of the incident beam in the detector
plane with the square root of the intensity measurement to
produce a complex field, which is propagated back to the
object plane. The phase of this complex field in the
object plane is referred to as an “approximant” (or GS
approximant as it is inspired by the GS algorithm) as it is
generally closer to the solution than the raw intensity
measurement. Note that the adjoint of operator H, used in
the gradient descent method, can also be used to generate

an approximant; however, we will restrict our analysis to
the GS approximant. The approximant can be used in lieu
of the raw measurement for the DNN training. This is an
example of a “physics-informed” method as part of the
physical process is embedded in the approximant itself.
A similar procedure involving such a preprocessing step
has been described recently in [18].
In what follows, we describe a series of experiments

designed to systematically compare the end-to-end,
physics-informed (using the GS approximant), and the
classical Gerchberg-Saxton methods for different levels
of noise. Corresponding simulations have been performed
and are presented in the Supplemental Material [16]. The
experimental apparatus is depicted in Fig. 1.
The light source is a helium-neon laser emitting con-

tinuous wave radiation at 632.8 nm. The laser beam
intensity is controlled by a calibrated variable neutral
density filter. The beam is focused onto a 5 μm circular
pinhole using a 10×, 0.25 NA Newport objective. After the
pinhole, the beam is collimated with a 100 mm lens. The
beam is then passed through a transmissive spatial light
modulator (SLM) (Holoeye LC2012) with 36 μm square
pixels. In order to maximize the SLM phase modulation
capability, the incident light is linearly polarized (P1) at a
certain angle (45° from the horizontal axis). The modulated
light from the SLM is filtered by a second polarizer (P2).
The complex (phase and intensity) transmittance of the
SLM was calibrated interferometrically for the particular
polarizers configuration used in the experiment. The SLM
surface is reduced by a factor of 2.3 by a telescope system
(lenses L3 and L4 in Fig. 1) in order for the diffracted
pattern to fit within the detector. The detector is an EM-
CCD 1004 × 1002 array (QImaging Rolera EM-C2) of
8 × 8 μm pixels. The EM gain and exposure time of the
camera are controlled by software. The detector is placed at
a distance Δz ¼ 400 mm from the image plane. An addi-
tional neutral density filter with an optical density of 2 is

He-Ne laser

EM-CCD

VND

P1

P2 L3 L4

L1L2

F1

F2

Image
plane

ΔzSLM

FIG. 1. Optical apparatus. VND, variable neutral density filter;
P1–P2, polarizers; L1, 10×, 0.25 NA objective; L2, 100 mm
lens; L3, 230 mm lens; L4, 100 mm lens; F1, 5 μm pinhole; F2,
iris. SLM, transmissive spatial light modulator. Lenses L3 and L4
are confocal. The distance between the SLM and L3 is 230 mm,
the distance between L4 and the image plane is 100 mm, and
Δz ¼ 400 mm.
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placed in front of the detector to suppress background
light and adjust the photon level range. The actual optical
power is measured between filter F2 and lens L4 with a
silicon detector. Details about the calibration are given in

the Supplemental Material [16]. It should be noted that the
SLM has a residual intensity modulation effect, which was
measured during the calibration step (see Supplemental
Material [16]).
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FIG. 2. (a),(b) Ground truth phase of one example from each test set of IC layouts and ImageNet. (c)–(f) Raw measurements in the
detector plane. (g)–(j) Gerchberg-Saxton algorithm reconstructions from the raw measurements (c)–(f). (k)–(n) DNN reconstructions
with the end-to-end method. (o)–(r) Approximants in the image plane. (s)–(v) DNN reconstructions from the approximants (o)–(r) with
the physics-informed method. For better display, the gray scales of all images have been normalized to range from the minimal to
the maximal value. Images (a), (b), and (g)–(v) represent a phase in the image plane and have a physical size of 4 × 4 mm, while images
(c)–(f) represent an intensity in the detector plane and have a physical size of 8 × 8 mm.
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For each image category (ImageNet and IC layouts)
and for each noise level, a different DNN is trained. The
examples are split into a training set, a validation set and
a test set containing 9500, 450, and 50 examples of 256
by 256 pixel images, respectively. The DNN input and
output images are 256 by 256 pixels, which is the native
resolution of the images in the data set. For the end-to-end
method, the detector images (1002 by 1002 pixels) are
resampled to the proper size using bilinear interpolation.
For the physics-informed method, each detector image is
zero padded to a size such that the inverse Fresnel
propagator would yield an approximant in which the object
covered a 256 by 256 pixel area. The DNN has the same
encoder-decoder architecture as presented in [5] except that
five instead of six convolutional layers are used in the
encoder and decoder parts.
Examples of reconstruction from the test sets for both

ImageNet and IC layouts are shown in Fig. 2 for two
extreme photon level cases. Table I summarizes the noise
level for each experiment shown in Figs. 2 and 3. The noise
levels indicated in the table refer to the incident beam, i.e.,
with no modulation on the SLM. When a pattern is
displayed on the SLM, the SNR at the detector plane
varies strongly spatially as a result of intensity redistrib-
ution, which is why using the incident beam as reference
was preferred. The integration time was set at 2 ms for
all experiments mentioned in Table I and Figs. 2 and 3. The
integration time was kept short to avoid degradation of the
SNR due to air turbulence.
The results shown in Fig. 2 allow us to draw qualitative

conclusions. As can be seen in Figs. 2(g)–2(j) and
2(o)–2(r), the DNN is very efficient in suppressing the
granularity typical of shot noise. The end-to-end method
reconstructions appear as low-pass filtered versions of
the original image, especially for ImageNet examples.

IC layout examples are still reconstructed with sharp
edges as this feature is omnipresent in the IC layout. The
interpretation is that the DNN does not fully learn the
diffraction operator, but rather learns how to suppress
fringes and other diffraction related patterns and also how
to promote characteristic features of the training exam-
ples. The physics-informed reconstructions are visually
better because, in this case, high frequencies are provided
to the DNN by the approximant [especially visible in
Fig. 2(q)]. In the low photon example of the IC layout
[Fig. 2(t)], the general pattern is recovered, but additional
spurious tracks have been added by the DNN that seem to
promote periodicity, a feature quite prominent in IC
layout examples.
We use the Pearson correlation coefficient (PCC ¼

−NPCC) as a figure of merit for the quality of the
reconstructions; the results are shown in Fig. 3. Note that
other metrics for image quality can be used. In Fig. 3 of
the Supplemental Material [16], we show a comparison of
the following metrics: the classical mean square error, the

TABLE I. Noise levels and photon count for the experiments
shown in Fig. 3. The illumination conditions are the same for both
the IC layout and the ImageNet data sets. The photon count is the
effective number of photons after dividing by the quantum
efficiency per detector pixel averaged over the whole detector
field for the incident beam (no modulation on the SLM). The
procedure for measuring the photon count is given in the
Supplemental Material [16]. The SNR is the mean of the incident
beam signal divided by its standard deviation and averaged over
the whole field of view. The limit SNR is the square root of the
number of photons.

Experiment EM gain Photon count �5% SNR Limit SNR

1 1 1.0 × 103 20 32
2 1 84 2.7 9.2
3 1 43 1.45 6.6
4 4.8 9.8 0.9 3.1
5 54 1.1 0.5 1.0
6 54 0.25 0.24 0.5
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FIG. 3. Pearson correlation coefficient between the ground
truth and the DNN reconstructions. (a) IC layout data set.
(b) ImageNet data set. The markers indicate the mean over the
test set (50 examples) and the error bars �1 standard deviation
from the mean.
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structural similarity index (SSIM) [19], and a wavelet
transform based SSIM [20].
In the case of the IC layout, for all photon levels, the

physics-informed method performs systematically better
than the end-to-end method, which in turn performs better
than the GS algorithm. A similar result holds for the
ImageNet example set, except that there is less difference
between the end-to-end and the physics-informed
reconstruction and also that the standard deviation of the
reconstruction quality is larger even for high photon levels.
The GS reconstructions for high photon level do not display
this trend (their standard deviation remains equally large).
This latter observation confirms that the strong prior in the
IC layout geometry is efficiently exploited by the DNN. In
Fig. 3, we also plotted the PCC between the ground truth
and the approximant. The approximant is the input image to
the physics-informed DNN and is also the result of the first
iteration of the GS algorithm. As such, the increase in
image quality between the approximant and the GS and
physics-informed reconstructions indicates the improve-
ment brought by each technique. The improvement brought
by the DNN is systematically better. We did not plot the
PCC between the raw measurement and the ground truth as
these images belong to different spaces (object vs detector
space), and for strong diffraction the comparison would be
meaningless.
The PCC is not sensitive to the magnitude of the images

[i.e., PCCðA;BÞ ¼ PCCðαA; βBÞ; α; β ∈ R], the phase
images are thus reconstructed up to a scaling factor.
However, for a given DNN the scaling factor is constant
and can be retrieved by comparing the validation set ground
truth examples and corresponding reconstructions. In prac-
tice, the scaling factor is obtained by comparing the histo-
grams of the ground truths and reconstructions images.
The approximant clearly helps in recovering high

fidelity images. The question of knowing what is the best
way of obtaining an approximant in the context of phase
retrieval is beyond the scope of this Letter. It should be
recognized that the GS approximant the way it is computed
here corresponds to half of the first iteration of the GS
algorithm. The question of whether it is worthy to iterate
more in order to generate an approximant is still open, but
preliminary results tend to show that little is gained by
iterating more.
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