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A Bose condensate, subject to periodic modulation of the two-body interactions, was recently observed
to emit matter-wave jets resembling fireworks [Nature (London) 551, 356 (2017)]. In this Letter, combining
experiment with numerical simulation, we demonstrate that these “Bose fireworks” represent a late stage in
a complex time evolution of the driven condensate. We identify a “density wave” stage which precedes jet
emission and results from the interference of matter waves. The density waves self-organize and self-
amplify without breaking long range translational symmetry. This density wave structure deterministically
establishes the template for the subsequent patterns of the emitted jets. Moreover, our simulations, in good
agreement with experiment, address an apparent asymmetry in the jet pattern, and show that it is fully
consistent with momentum conservation.
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Time-periodic driving, which allows coherent manipula-
tion of many-body systems, is becoming an exciting tool in
the field of ultracold atomic gases. Driving provides access
to new quantumphysics like, for example, topological states,
synthetic gauge fields, and Mott transitions [1–7]. Of
particular interest is the rather unique capability of these
atomic systems to investigate nonequilibrium many-body
dynamics [8]. Also unique to ultracold gases is the ability to
use Feshbach resonances to periodically modulate atomic
interactions [9], as recently implemented by the Chicago
group [10,11] and the Rice group [12–14] on Bose-Einstein
condensates (BECs). In the Chicago experiment, a collective
emission of matter-wave jets resembling fireworks occurs
above a threshold modulation amplitude [10].
In the present Letter, we use the time-dependent Gross-

Pitaevskii (GP) equation to study the evolution of the
modulated BECs and the emission of jets. We show that
the simulations reliably capture the “Bose fireworks” dynam-
ics seen in experiments. In combination with a new set of
experiments, we identify a previously unobserved early stage
of the time evolution. Immediately after the onset of modu-
lation, we observe that density waves emerge and grow
rapidly within the condensate. The density waves display a
high degree of disorder, reflecting quantum fluctuations that
we model with a very small [15] random noise term.
As in general parametric resonances [16–20], the

density waves set up an effective, self-consistently pro-
duced “grating” that, through feed-back effects, resonantly
amplifies their pattern [21]. (A notable feature distinguish-
ing the parametric resonance here is that the amplification
can occur with an essentially arbitrary driving frequency.)

This process proceeds until pairs of jets (having wave
number determined by [10,22] the modulation frequency
ω) are ejected in opposite directions. Within these pairwise
correlations, there remains a quantitative asymmetry that
has attracted prior attention [23,24].
We focus on two important results: first, we show that the

density wave pattern underlies the jet-emission process,
and second, we provide a quantitative understanding of
the puzzling asymmetry in the emission pattern. Figure 1
summarizes the full evolution of the system, and it shows
good agreement between our simulations and experiment.
Three distinct regimes of the Bose fireworks can be
identified: the early density wave (DW) regime, the initial
emergence of jets (called the “near-field emission”) and the
well established jet emission regime (called the “far-field
emission”). In the near-field stage, the excited modes begin
to leave the condensate while still substantially overlapping
with each other. After a sufficiently long time, the matter-
wave jets become well separated in the far field, and the
observed density profiles primarily reflect the populations
in momentum-space.
We begin with the theoretical and experimental inves-

tigation of the early-stage density waves. Figure 2 presents
the experimental observation and theoretical confirmation
of the emergence of density waves. The experiments begin
with a Bose condensate of 4 × 104 cesium atoms prepared
in a uniform disk-shaped trap with a radius of 13 μm (see
Ref. [10] for experimental details). The trap has a potential
barrier of height h × 200 Hz in the horizontal direction
(h is the Planck constant) and is harmonic vertically, with a
frequency of 220 Hz. By modulating the magnetic field
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near a Feshbach resonance, we make the scattering length
oscillate as aðtÞ ¼ adc þ aac sinðωtÞ with a small offset,
adc ¼ 4a0, and a large amplitude, aac ¼ 40a0, at frequency
ω=2π ¼ 620 Hz, where a0 is the Bohr radius.
After modulating the interaction for time t, we perform

in situ imaging and observe density waves forming within
the condensate prior to jet emission. Figure 2(a) shows
snapshots of the condensate density distribution nðrÞ and
theoretical simulations. To be more quantitative, we extract
the density wave amplitude, Akf ¼ n−10

R
jkj¼kf

dkjñðkÞj,
from the Fourier transformation of the condensate density,
ñðkÞ ¼ ð2πÞ−1 R dre−ik·rnðrÞ, see Fig. 2(b). Here, kf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mω=ℏ

p
is the wave number of the density wave deter-

mined by the parametric resonance condition, n0 is the
average density of the static condensate prior to interaction
oscillations, m is the boson mass, and ℏ is the reduced
Planck constant. Interestingly, this density wave amplitude
exhibits fast oscillation under a slowly growing envelope.
We note that, this density wave pattern is reminiscent of

Faraday waves in classical fluids [25,26], and is related to
that predicted for driven atomic gases [27–30] as well as
observed in a one-dimensional condensate [31]. In contrast
to classical Faraday waves, our system does not sponta-
neously exhibit threefold or higher symmetries. These
symmetries are expected to arise from nonlinear kinetic
terms in the hydrodynamic equations of motion [25,26],
which are not present in the GP equation.
Our theoretical approach is based on a dynamical GP

equation:

iℏ
∂ψ
∂t ¼

�

−
ℏ2

2m
∇2 þ VðrÞ þU0jψ j2 − μ

�

ψ

þ U1 sinðωtÞjψ j2ψ ; ð1Þ

where ψ is the wave function, μ ¼ U0n0 is the chemical
potential of the static condensate, VðrÞ is the external trap
potential, and r ¼ ðx; yÞ is a two-dimensional (2D) spatial
coordinate (with origin at the trap center). In addition,
U0 ¼ 4πℏ2adc=m and U1 ¼ 4πℏ2aac=m are the dc and ac
interaction strengths, respectively. At short times, the
condensate is weakly excited and the wave function can
be linearized [27,28]

ψ ¼ ψ0½1þ νðr; tÞ�; ð2Þ

where ψ0 ¼ ffiffiffiffiffi
n0

p
exp ½iU1n0 cosðωtÞ=ℏω� is the wave func-

tion of a uniform BEC, and U0 has been absorbed through
the parametrization in Eq. (1). Since the characteristic DW
length scales are much smaller than the trap size, we ignore
trap effects in our analytical approach. In the plane wave
basis, we write νðr; tÞ ¼ ½ξðtÞ þ iζðtÞ� cosðk · rþ φÞ with
both ξðtÞ and ζðtÞ real and φ a random phase. Since
jνj ≪ 1, ξ satisfies the Mathieu equation for parametric
resonances:

∂2ξ

∂t2 þ Ω2½1þ α sinðωtÞ�ξ ¼ 0; ð3Þ

and ζ satisfies the same equation with an extra term
−αω cosðωtÞð∂ζ=∂tÞ on the left-hand side. Here, we keep
only the leading terms in α, Ω2 ¼ ℏ2k4=4m2 þ U0n0k2=m,
and α ¼ U1n0k2=mΩ2.
The solution of Eq. (3) is ξðtÞ ≈ Aþ cosðωt=2þ ϑþÞ

expðλþtÞ þ A− sinðωt=2þ ϑ−Þ expðλ−tÞ. Here, A� are
numerical coefficients, and the exponents are

λ� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2Ω2

16
−
�

Ω −
ω

2

�
2

s

: ð4Þ

The solution exhibits both subharmonic oscillationswith half
the driving frequency,ω, andan exponential envelopegrowth
(via λþ). For U0 ≈ 0, as in the experiments, the resonance
with maximal λþ occurs at k ¼ kf. At this point, ϑ� ≈ 0

and ζðtÞ≈−Aþsinðωt=2ÞexpðλþtÞþA−cosðωt=2Þexpðλ−tÞ.
The interference between the uniform background and the

excitations then gives the density nðrÞ ¼ n0j1þ νðr; tÞj2 ≈
n0½1þ 2ξðtÞ cosðk · rþ φÞ�, leading to the density waves
of the exponentially growing envelope that we report here.
To provide the full dynamical evolution and to include trap
effects, we next appeal to the more complete numerical
simulations of the GP equation.
Our simulations are 2D, and they incorporate a ring trap

with inner and outer radii, Rin and Rout, respectively. We
choose VðrÞ ¼ V0 for Rin < r < Rout and zero elsewhere.
V0 is taken to be compatible with experiment, Rin is taken
to be the condensate radius, and, as in experiment [10],
Rout ≈ 1.5Rin. We use a CUDA-based GP equation solver
[32,33], implemented on graphic processing units, based on
a split-step algorithm. At t > 0, we introduce a periodic
oscillation of the two-body interaction term.

FIG. 1. The real space density distribution nðrÞ as a comparison
between experimental data and simulations. In both, the modu-
lation frequency, ω=2π, is 2 kHz and the dc and ac interaction
energies, respectively, are U0n0 ≈ h × 40 Hz and U1n0 ≈
h × 480 Hz, where h is Planck’s constant (see the main text
for detailed definitions). As a function of modulation time t,
the system exhibits three phases: density waves in a confined
condensate (blue box), near-field emission (orange box), and far-
field emission (red box).
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It should be noted that the exponents in Eq. (4) coincide
with those derived in Ref. [10] for the matter-wave jets.
This suggests that the two forms of excitations may be
manifestations of the same physics. We probe this hypoth-
esis in Fig. 3, which contains results from our full GP
simulations. Indeed, Fig. 3 provides strong simulation
evidence that the density waves are necessary precursors
to the jets, and that they establish the template for the
subsequent jet emission pattern. In particular, we find that
the structure factor with fixed extrema (established by the
DW pattern at the onset of shaking) is precisely equivalent
to the real-space emitted jet populationNðϕÞ observed after
a long propagation time.
The structure factor is defined by Sðkf;ϕÞ ¼

N−1
0

R
kdkjñðkÞj2, where the magnitude and phase of the

wave vector are jkj ¼ k ≈ kf and ϕ ¼ arctanðkx=kyÞ. Note
from Fig. 3(a) that the structure factor contains random
peaks and valleys as determined by the initial random seed
which emulates the fluctuations of real experiments. These
patterns are established at the onset of shaking, and the only
change with increasing time is an exponential growth of the
peak amplitudes.
The dashed black line plotted in Fig. 3(a) is the

real-space azimuthal distribution for the jet population

NðϕÞ ¼ R
r¼ðℏt=mÞk rdrnðrÞ, at long times. Importantly,

the angular distribution shows the equivalence between
Sðkf;ϕÞ and NðϕÞ. This underlies our claim that density
waves and jets are deterministically correlated. These
results are summarized in Fig. 3(b). This presents a
schematic plot linking the momentum space spectrum of
the DW and the population of jets with the same wave
vector �k after long time of flight.
Having established the equivalence between the far-field

jets and the initial density waves, one might expect that the
same azimuthal distribution would appear in the near-field
regime, when jets are first emitted from the condensate.
However, our simulations show that this is not the case. In
Figs. 4(a) and 4(b), a clear modification of the distribution
shape with varying time is seen, and is accompanied by an
“inversion symmetry breaking” (in the near field). This is
associated with the observation (reported experimentally
[10]) of an asymmetric two-particle correlation function
gð2ÞðϕÞ of the jet emission pattern, i.e., gð2ÞðπÞ ≠ gð2Þð0Þ.
Here, we propose and provide strong numerical support

for a scenario that explains this observation. Moreover, in
contrast to the literature [23,24], in our scenario, momentum
is fully conserved. This is well substantiated by the detailed
numerics summarized in Fig. 4(c), along with analytical
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FIG. 2. Experiment and simulation comparison for early-stage density waves (DW) with jkj ¼ kf. (a) The real-space DWoscillations
inside the condensate. Theory (top) and experiment (bottom) show good qualitative agreement. The experiment exhibits additional
static, long-wavelength density modulations due to trap imperfections. The experimental details are provided in the main text. (b) The
amplitude of the density waves in the primary mode comparing simulations (red solid line) and experiments (blue dots with error bars).
In addition to fast oscillations, both results show a consistent observation of an exponential growth of the envelope until the matter-wave
jets are emitted from the condensate.
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arguments in the Supplemental Material [34]. To quantify
this inversion asymmetry, we introduce a parameter,

ηr ¼
h½NðθÞ − Nðθ þ πÞ�2i

2hNðθÞi2 ¼ gð2Þð0Þ − gð2ÞðπÞ;

for real space (and its analogue, ηk in momentum space
[34]), where h…i corresponds to averaging over angles θ
and ensembles. Figure 4(c) plots the asymmetry functions,
ηr;k, in real- and momentum-space, together with the
corresponding correlation function gð2ÞðϕÞ shown in the
inset. The spatial asymmetry ηr decreases from a finite value
to zero when going from the near to far field. This indicates
that the inversion symmetry is recovered at large times. The
momentum-space asymmetry, ηk, interestingly, remains
zero independent of time, showing clearly that momentum
conservation is obeyed at all times.
We attribute this asymmetry to the fact that, in the near

field, excitations of different wave vectors substantially
overlap with each other. The resulting pattern is derived
from the interference between these overlapping modes,
which have uncorrelated random phases. Thus, when

measuring the population at angles θ and θ þ π, the
symmetry between the relevant counter-propagating pair
�k (tan θ ¼ ky=kx) is masked by interference from other
uncorrelated modes. By contrast, in the far field, different
modes are well separated so that each jet now represents a
single mode. Here, momentum conservation is more appar-
ent and inversion symmetry in real space is recovered [34].

FIG. 4. Time evolution and correlations of the emitted jets.
(a) shows the calculated jet emission pattern evolving from the
near- to far-field regimes. The calculation is based on identical
initial noise seeding. (b) shows the real space azimuthal pop-
ulation of the four images in (a), identified by the same color.
Note that, the t ¼ 45 ms far-field curve is equivalent to that
shown dashed in Fig. 3(a). Here, unlike in Fig. 3, the peaks and
valleys are slightly displaced with time. Panel (c) probes the
emission asymmetry in real space ηr ¼ gð2ÞðπÞ − gð2Þð0Þ (brown
circles) and the momentum-space analogue ηk (green squares).
The main figure shows that the ð0; πÞ asymmetry is always absent
in momentum space (ηk is strictly zero within numerical
precision) so that momentum is conserved. In real space, using
(b), we find that this ð0; πÞ asymmetry decreases with increasing
time. The inset indicates the correlation function gð2ÞðϕÞ at the
same four times as in (a), along with an early time momentum
correlation function at t ¼ 20 ms (black curve). Again, inversion
0 − π symmetry is broken at short times, but it recovers after a
long time-of-flight and is fully preserved in momentum space.
The solid line (brown) in (c) is an analytical fit to ηr [34].

(a)

(b)

FIG. 3. Connection between density waves before jet emission
and the subsequent matter-wave jet pattern. (a) shows the
azimuthal density structure factor SðkfÞ from a single iteration
of the GP simulations at the resonant wave number kf at t ¼ 10

(blue), 13 (purple), and 15 (red) ms prior to jet emission. At each
time, we observe the same shape with a growing amplitude,
consistent with the expected amplification process of density
waves. The dashed black curve is the real-space azimuthal
population distribution of jets NðϕÞ at t ¼ 45 ms. The scaling
factor, N0, is the total number of atoms in the system. The
alignment of all maxima and minima between Sðkf;ϕÞ and NðϕÞ
shows the equivalence between the density waves and jets.
(b) schematically shows that the early-time density waves with
wave number kf leads to the emission of counter-propagating jets
with the same wave number kf at the long time.
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The asymmetry in the emission pattern has alternatively
been attributed to di-jet acollinearity due to hydrodynamic
collisions, seen, for example, in quark-gluon plasmas [23],
or to the Hanbury Brown–Twiss effect in the angular
momentum eigenstate basis within a time-dependent
Bogoliubov theory [24]. In this context, our numerical
calculations show that momentum conservation persists
throughout the entire evolution, as argued earlier [10]. In
this Letter, we have provided a more intuitive and quanti-
tative picture showing how the asymmetry arises from the
interference between overlapping matter-wave modes [34].
Conclusions.—The present Letter has addressed the jet

emission process induced by a periodic drive of the two-
body interactions. Through a combination of simulations of
the Gross-Pitaevskii equation and experiments, we dem-
onstrated that the jet structure is imprinted in the early
stages of an excited condensate through density waves.
Observing the actual density waves in experiments, as
reported in the present Letter, was key to confirming this
picture. Also critical to this analysis is the demonstrated
capability of the GP simulations. They have successfully
addressed stimulated emission experiments over widely
varying time, space, and momentum coordinates. Our
simulations have provided predictive capabilities as well
as the ability to establish the important underlying princi-
ples (such as momentum conservation) of a broad scope of
experimental matter-wave jet observations.
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