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We analyze the universal radiative correction ΔV
R to neutron and superallowed nuclear β decay by

expressing the hadronic γW-box contribution in terms of a dispersion relation, which we identify as an
integral over the first Nachtmann moment of the γW interference structure function Fð0Þ

3 . By connecting the
needed input to existing data on neutrino and antineutrino scattering, we obtain an updated value of
ΔV

R ¼ 0.02467ð22Þ, wherein the hadronic uncertainty is reduced. Assuming other standard model
theoretical calculations and experimental measurements remain unchanged, we obtain an updated value
of jVudj ¼ 0.97370ð14Þ, raising tension with the first row Cabibbo-Kobayashi-Maskawa unitarity
constraint. We comment on ways current and future experiments can provide input to our dispersive
analysis.
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The unitarity test of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix serves as one of the most important
precision tests of the standard model. In particular, tests
of first row CKM unitarity jVudj2 þ jVusj2 þ jVubj2 ¼ 1
receive the most attention since these matrix elements are
known with the highest precision, all with comparable
uncertainties. The good agreement with unitarity [1] serves
as a powerful tool to constrain new physics scenarios.
Currently, the most precise determination of jVudj

comes from measurements of half-lives of superallowed
0þ → 0þ nuclear β decays with a precision of 10−4 [2].
At tree level, these decays are mediated by the vector
part of the weak charged current only, which is protected
against renormalization by strong interactions due to a
conserved vector current (CVC), making the extraction
of jVudj relatively clean. Beyond tree level, however,
electroweak radiative corrections (EWRC) involving the
axial current are not protected, and lead to a hadronic
uncertainty that dominates the error in the determination
of jVudj.
The master formula relating the CKM matrix element

jVudj to the superallowed nuclear β decay half-life is as
follows [2]:

jVudj2 ¼
2984.432ð3Þ s
F tð1þ ΔV

RÞ
; ð1Þ

where the nucleus-independent F t value is obtained from
the experimentally measured ft value by absorbing all
nuclear-dependent corrections, and where ΔV

R represents
the nucleus-independent EWRC. Currently, an average of
the 14 best measured half-lives yields an extraordinarily
precise value of F t ¼ 3072.07ð63Þ s [3]. A similar master
formula exists for free neutron β decay [4] depending
additionally on the axial-to-vector nucleon coupling ratio
λ ¼ gA=gV , and is free of nuclear-structure uncertainties.
But the much larger experimental errors in the measure-
ment of its lifetime and the ratio λ [5] makes it less
competitive in the extraction of jVudj. Regardless, if first
row CKM unitarity is to be tested at a higher level of
precision, improvement in the theoretical estimate of ΔV

R by
reducing hadronic uncertainties is essential.
The best determination of ΔV

R ¼ 0.02361ð38Þ was
obtained in 2006 by Marciano and Sirlin [6] (in the
following, we refer to their work as [MS]). They were
able to reduce the hadronic uncertainty by a factor of 2 over
their earlier calculation [7] by using high order perturbative
QCD corrections originally derived for the polarized
Bjorken sum rule to precisely estimate the short distance
contribution. At intermediate distances, an interpolating
function motivated by vector meson dominance (VMD)
was used to connect the long and short distances and
was identified as the dominant source of theoretical
uncertainty. This result leads to the current value of jVudj ¼
0.97420ð21Þ [1].
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In this Letter, we introduce a new approach for evalu-
ating ΔV

R based on dispersion relations that relate it to
directly measurable inclusive lepton-hadron and neutrino-
hadron structure functions. Dispersion relations have
proved crucial for evaluating the γZ-box correction to
parity violating electron-hadron interaction in atoms and in
scattering processes [8–20]. It led to a significant shift in
the 1-loop SM prediction for the hadronic weak charges,
and ensured a correct extraction of the weak mixing angle
at low energy [21]. Using existing data on neutrino and
antineutrino scattering, we obtain a more precise value of
the nucleus-independent EWRC,

ΔV
R ¼ 0.02467ð22Þ; ð2Þ

and therefore a new determination of jVudj,

jVudj ¼ 0.97370ð14Þ: ð3Þ
We summarize in this Letter the essential features of our
analysis that lead us to these values, and defer details to an
upcoming longer paper [22].
Among the various contributions at Oðα=πÞ to the

neutron β decay amplitude, Sirlin established [23] that
the only one sensitive to the hadronic scale is the part in the
γW box amplitude (Fig. 1),

MVA ¼ 2
ffiffiffi
2

p
e2GFVud

Z
d4q
ð2πÞ4

×

�
ūeðkÞγμð=k−=qþmeÞγνPLvνðkÞ

q2½ðk−qÞ2−m2
e�

M2
W

q2−M2
W
Tμν
VA

�
;

ð4Þ

involving the nucleon matrix element of the product of the
electromagnetic (EM) and the axial part of the weak
charged current

Tμν
VA ¼ 1

2

Z
d4xeiqxhpðpÞjT½JμemðxÞJνW;Að0Þ�jnðpÞi: ð5Þ

After inserting the nucleon matrix element parametri-
zed in terms of the P-odd invariant function Tμν

VA ¼
ðiϵμναβpαqβ=2pqÞT3 into the amplitude [Eq. (4)], the
correction to the tree level amplitude is expressed as [23]

□
VA
γW ¼ α

8π

Z
∞

0

dQ2
M2

W

M2
W þQ2

×
Z

i
ffiffiffiffiffi
Q2

p

−i
ffiffiffiffiffi
Q2

p dν
ν

4ðQ2 þ ν2Þ3=2
πMQ4

T3ðν; Q2Þ ð6Þ

where, after Wick rotation, the azimuthal angles of the loop
momentum have been integrated over and the remaining
integrals have been expressed in terms of Q2 ¼ −q2 and
ν ¼ ðpqÞ=M. With negligible error, we assume a common
nucleon mass M in the isospin symmetric limit and we

work in the recoil-free approximation. This contributes to
the nucleus-independent EWRC as

ΔV
R ¼ 2□VA

γWþ;…; ð7Þ
where the ellipsis denotes all other corrections insensitive
to the hadronic scale.
Marciano and Sirlin estimate □

VA
γW by phenomenologi-

cally treating the ν integral FM:S:ðQ2Þ≡ R
dν;…, in the

second line of Eq. (6) as a function of Q2, and para-
metrizing it piecewise over three domains: in the short
distance domain Q2 > ð1.5 GeVÞ2, the leading term in the
OPE corrected by high order perturbative QCD is used; in
the long distance domain Q2 < ð0.823 GeVÞ2, the elastic
nucleon with dipole form factors is used with a 10%
uncertainty; and at intermediate scales ð0.823 GeVÞ2 <
Q2 < ð1.5 GeVÞ2, an interpolating function inspired by
VMD is used and is assigned a generous 100% uncertainty.
Performing the integration over Q2 in Eq. (6) yields their
value of ΔV

R quoted above.
Our evaluation of □

VA
γW begins by first separating the

invariant amplitude T3 with respect to isosinglet and
isotriplet components of the EM current T3 ¼
Tð0Þ
3 þ Tð3Þ

3 . Crossing symmetry implies Tð0Þ
3 is odd under

ν → −ν while Tð3Þ
3 is even. Since the ν integration measure

in Eq. (6) is odd, only Tð0Þ
3 contributes to □

VA
γW . We then

write a dispersion relation in ν for Tð0Þ
3 , taking into account

the physical sheet singularities. Poles at νB ¼ �Q2=ð2MÞ
correspond to the elastic single-nucleon intermediate state,
and branch points at νπ ¼ �ðm2

π þ 2Mmπ þQ2Þ=ð2MÞ
correspond to single pion production thresholds. We
identify the discontinuity of Tð0Þ

3 across the cut as the

γW-interference structure function, 4πFð0Þ
3 ðν; Q2Þ ¼

Tð0Þ
3 ðνþ iϵ; Q2Þ − Tð0Þ

3 ðν − iϵ; Q2Þ, so that the dispersion
relation reads

Tð0Þ
3 ðν; Q2Þ ¼ −4iν

Z
∞

0

dν0
Fð0Þ
3 ðν0; Q2Þ
ν02 − ν2

: ð8Þ

where Fð0Þ
3 contains both the elastic and inelastic contri-

butions. No subtraction constant appears since Tð0Þ
3 is an

odd function of ν. Only I ¼ 1=2 intermediate states
contribute because the EM current is isoscalar. After

FIG. 1. Feynman diagrams corresponding to the amplitude in
Eq. (4), which contribute at orderOðα=πÞ to neutron β decay and
are sensitive to the hadronic scale.
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inserting Eq. (8) into Eq. (6), performing the ν integration,
and changing the integration variable ν0 → Q2=ð2MxÞ we
obtain

□
VA
γW ¼ 3α

2π

Z
∞

0

dQ2

Q2

M2
W

M2
W þQ2

Mð0Þ
3 ð1; Q2Þ; ð9Þ

where Mð0Þ
3 ð1; Q2Þ is the first Nachtmann moment of the

structure function Fð0Þ
3 [24,25]

Mð0Þ
3 ð1; Q2Þ ¼ 4

3

Z
1

0

dx
1þ 2r
ð1þ rÞ2 F

ð0Þ
3 ðx;Q2Þ; ð10Þ

and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2x2=Q2

p
. To estimate □

VA
γW , we require

the functional form of Fð0Þ
3 depending on x and Q2, or

equivalently, W2 ¼ M2 þ ð1 − xÞQ2=x and Q2.
We draw attention to the fact that Eq. (9) relates [MS]’s

phenomenological function to the first Nachtmann moment

FMSðQ2Þ ¼ 12

Q2
Mð0Þ

3 ð1; Q2Þ; ð11Þ

which will prove useful when comparing their results with

ours. Furthermore, since Fð0Þ
3 depends directly on on-shell

intermediate hadronic states, it provides a better handle on
the physics that may enter at various scales. Figure 2

depicts the domain in theW2–Q2 plane over which Fð0Þ
3 has

support: the single-nucleon elastic pole is at W2 ¼ M2,
and the inelastic continuum covers the region above
W2 > ðM þmπÞ2.
Our parametrization of Fð0Þ

3 is as follows:

Fð0Þ
3 ¼ FBorn þ

�
FpQCD; Q2 ≳ 2 GeV2

FπN þ Fres þ FR; Q2 ≲ 2 GeV2;

ð12Þ
where each component is given by

FBorn ¼ −
1

4
ðGp

M þGn
MÞGAδð1 − xÞ ð13Þ

Z
1

0

dxFpQCD ¼ 1

12
½1þ pQCD� ð14Þ

FπN ¼ FχPT × ðFp
1 þ Fn

1Þ
jGAj
gA

ð15Þ

Fres ¼ negligible ð16Þ

FR ¼ CγWfth
m2

ω

m2
ω þQ2

m2
a1

m2
a1 þQ2

�
ν

ν0

�
αρ
0

; ð17Þ

and supplies the dominant contribution to Fð0Þ
3 in various

regions indicated in Fig. 2, which we describe next.
We obtain the elastic Born contribution at W2 ¼ M2 in

Eq. (13) by using the updated values of the magnetic Sachs
form factorGM and the axial form factorGA for the nucleon
[26,27]. Above the threshold, W2 ≥ ðM þmπÞ2, we con-
sider the dominant physics operating in various of domains
in the Q2–W2 plane separately. At large Q2 ≳ 2 GeV2, the

Nachtmann moment Mð0Þ
3 reduces to the Mellin moment

and is fixed by the sum rule corrected by pQCD in Eq. (14)
by an analogy with that of the polarized Bjorken sum rule
[MS]. At small Q2 ≲ 2 GeV2, we estimate the contribution
[Eq. (15)] near the inelastic threshold by computing the
single pion production contribution FχPT in chiral pertur-
bation theory (χPT) at a leading order. To improve the
behavior of FχPT at a larger Q2, we replace the pointlike
nucleon vertices with measured Dirac and axial nucleon
form factors, F1 and GA. At higherW2, we investigated the
impact of several low-lying I ¼ 1=2 resonances based on a
few models [28–30], and found their contributions to □

VA
γW

to be negligible. Note that Δ resonances do not contribute

since only isoscalar electromagnetic transitions enter Fð0Þ
3 .

Finally, at a large W2, we use the form in Eq. (17)
inspired by Regge phenomenology together with VMD
[31] as illustrated in Fig. 3(a). In this picture, the Regge
behavior ðν=ν0Þα

ρ
0 arises from the exchange of the ρ

trajectory with an intercept αρ0 ¼ 0.477 [32], and is coupled
to the external currents via a1 and ωmesons encoded by the
VMD factors m2

V=ðm2
V þQ2Þ. We include a threshold

function fth ¼ ΘðW2 −W2
thÞð1 − exp½ðW2

th −W2Þ=Λ2
th�Þ,

which smoothly vanishes at the two-pion threshold point
W2

th ¼ ðM þ 2mπÞ2 to model the smooth background in the
resonance region [11]. We choose equal values for
the Regge and threshold scales of ν0 ¼ Λth ¼ 1 GeV to
ensure that Regge behavior sets in around W2 ∼
ð2.5 GeVÞ2. The function CγWðQ2Þ accounts for residual

FIG. 2. Phase space of the structure functions Fð0Þ
3 and Fνpþν̄p

3

in the W2–Q2 plane.
FIG. 3. Regge exchange model (a) for Fð0Þ

3 and (b) for Fνpþν̄p
3

using vector meson dominance.
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Q2 dependence beyond that of the VMD, which we infer
from experimental data as explained below.

Since the isospin structure of Fð0Þ
3 is ðI ¼ 0Þ × ðI ¼ 1Þ, it

is not directly accessible experimentally. However, infor-
mation about the P-odd structure function with a different
isospin structure ðI ¼ 1Þ × ðI ¼ 1Þ is available from
ν and ν̄ scattering. In particular, data exist on the first
Nachtmann momentMνpþν̄p

3 for the combination Fνpþν̄p
3 ¼

ðFW−

3 þ FWþ
3 Þ=2 derived from the difference of νp and ν̄p

differential cross sections. The data by the CCFR [33,34],
BEBC and Gargamelle [35], and WA25 [36] collaborations
cover a wide region of Q2 from 0.15 to 600 GeV2 (see
Fig. 4). Although the precision below Q2 ≈ 1.4 GeV2 is
less satisfactory, we are able to use it to collect information
about the form of the analogous Regge coefficient function
CWWðQ2Þ for this structure function, and thereby infer the
form of the required CγWðQ2Þ as follows.
We parametrize the structure functionFνpþν̄p

3 in precisely

the same way as in Eq. (12) for Fð0Þ
3 , and establish Fνpþν̄p

Born ,
Fνpþν̄p
pQCD , Fνpþν̄p

πN , Fνpþν̄p
res , and Fνpþν̄p

R along similar lines. In

this case,
R
1
0 dxF

νpþν̄p
pQCD satisfies the Gross-Llewellyn-Smith

sum rule [37] corrected by pQCD [38], while at lowQ2, the
Δ resonance and the Born contribution saturate the
Nachtmann moment [35]. At a large W2, the ω trajectory
controls the leading behavior, and couples to the external
currents by the a1 and ρ mesons [see Fig. 3(b)], leading to

Fνpþν̄p
R ¼ CWWfth

m2
ρ

m2
ρ þQ2

m2
a1

m2
a1 þQ2

�
ν

ν0

�
αω
0

: ð18Þ

We then fit the unknown function CWWðQ2Þ to the data for
Mνpþν̄p

3 ð1; Q2Þ in the range Q2 ≤ 2 GeV2. Due to the
quality of the data, we choose the simple linear form

CWWðQ2Þ ¼ AWWð1þ BWWQ2Þ ð19Þ

and obtain AWW ¼ 5.2� 1.5 and BWW ¼ 1.08þ0.48
−0.28 GeV−2.

The result of the fit is shown by the blue curve in Fig. 4. The
solid curve corresponds to the central value of the fit, and the
dotted curve indicates the maximum variation in Mνpþν̄p

3

allowed by the errors in the fit. We do not fit the three data
points below Q2 ¼ 0.1 GeV2 where Born and resonance
contributions dominate the GLS sum rule: rather, we use the
resonance parameters obtained in Ref. [28] from a fit to
modern neutrino data.
Finally, to obtain CγWðQ2Þ, we require the ratio of

Nachtmann momentsMð0Þ
3;Rð1; Q2Þ=Mνpþν̄p

3;R ð1; Q2Þ to agree
with the value predicted by VMD atQ2 ¼ 0, and the QCD-
corrected parton model at Q2 ¼ 2 GeV2. Since the ρ and ω
Regge trajectories are nearly degenerate [32], the two
conditions predict the same ratio [22]

Mð0Þ
3;Rð1; 0Þ

Mνpþν̄p
3;R ð1; 0Þ ≈

Mð0Þ
3;Rð1; 2 GeV2Þ

Mνpþν̄p
3;R ð1; 2 GeV2Þ ≈

1

36
: ð20Þ

For the linear parametrization in Eq. (19), this implies

CγWðQ2Þ ¼ 1

36
CWWðQ2Þ; ð21Þ

providing us with the final piece of FR in Eq. (17).
Upon inserting our parameterization [Eq. (12)] for the

structure functionFð0Þ
3 into Eqs. (9) and (10) and performing

the integrations, we obtain the following contributions to
□

VA
γW in units of 10−3: 2.17(0) from partonþpQCD, 1.06(6)

from Born, and 0.56(8) from Reggeþ resonanceþ πN, the
digit in parentheses indicating the uncertainty. Combining
themwith the remaining knowncontributions [MS] gives our
new values, ΔV

R ¼ 0.02467ð22Þ and jVudj ¼ 0.97370ð14Þ.
Our reevaluation of ΔV

R represents a reduction in theoretical
uncertainty over the previous [MS] result by nearly a factor
of 2. However, it also leads to a substantial upward shift in
the central value of ΔV

R and a corresponding downward
shift of jVudj by nearly three times their quoted error, now
raising tension with the first-row CKM unitarity con-
straint: jVudj2 þ jVusj2 þ jVubj2 ¼ 0.9984ð4Þ.
We pause to comment on the origin of the large shift in

the central value for ΔV
R with respect to [MS]. In Fig. 5 we

plot the integrandMð0Þ
3 ð1; Q2Þ½1þQ2=M2

W �−1 of Eq. (9) as
a function of Q2. In solid blue, we show the result of our
parametrization [Eq. (12)] after integrating over x. In
dashed red, we show the piecewise parametrization by
[MS] obtained with the help of Eq. (11). The discontinuity
in their parametrization at Q2 ¼ ð1.5 GeVÞ2 arises from
their choice of matching the Q2 integrals of pQCD
and the interpolating function over the short distance
domain, rather than matching the functions them-
selves. The log-linear scale conveniently accounts for the

FIG. 4. World data of the first Nachtmann moment
Mνpþν̄p

3 ð1; Q2Þ. The red curve is the pQCD-corrected GLS
sum rule above Q2 ≈ 2 GeV2, and the blue curve is the result
of the fit for AWW and BWW in Eq. (19).
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integration measure dQ2=Q2 in Eq. (9) so that the correc-
tion □

VA
γW is directly proportional to the area under the

curve. Although the line shapes are in agreement above
Q2 ≳ 2 GeV2 and below Q2 ≲ 0.001 GeV2, ours lies
significantly above that of [MS] for an intermediate Q2.
This difference is the origin of the discrepancy between our
central values for ΔV

R. By working with the two-variable

structure function Fð0Þ
3 ðx;Q2Þ, we were able to capture a

broad variety of physics (Born, Nπ, Regge) operating at
intermediate Q2 in contrast with the one-variable analysis
of FMSðQ2Þ by [MS]. We therefore believe our updated
result provides a more realistic assessment of ΔV

R , even
though the difference with them is larger than their quoted
theoretical uncertainty.
We conclude by discussing how new measurements

could provide tests of our parametrization of Fð0Þ
3 and

further reduce the uncertainty in ΔV
R . In view of the

upcoming high-intensity neutrino beam program at
Fermilab, we wish to point out the potential impact which
new, more precise measurements of Mνpþν̄p

3 ð1; Q2Þ at low
Q2 can have on our fit, as evidenced by Fig. 4. That said,

we have related Fð0Þ
3 and Fνpþν̄p

3 within a model. However,
by making use of isospin symmetry, we can establish a

more robust relationship between Fð0Þ
3 and the P-odd

structure function FN
3;γZ. The latter is accessible with

parity-violating deep inelastic (inclusive) electron scatter-
ing. Since the axial component of the weak neutral current
is predominantly isovector, we obtain

4Fð0Þ
3 ≈ Fp

3;γZ − Fn
3;γZ ≈ 2Fp

3;γZ − Fd
3;γZ: ð22Þ

Thus, fixed target measurements using hydrogen and
deuterium can in principle provide a more direct way to
determine □

VA
γW from data. High quality data in the range

0.1 GeV2 ≲Q2 ≲ 1 GeV2 and W2 ≳ 5 GeV2 would be

particularly advantageous, as our parametrization of Fð0Þ
3

admits the greatest model dependence and exhibits the
largest difference from that of [MS] in this domain. Such an
experimental program will however require a dedicated
feasibility study, as the contribution of F3;γZ to the parity-
violating asymmetry with a polarized electron beam is
suppressed by the small weak charge of the electron.
Finally, with the reduction in the uncertainty of jVudj,
the error in the first row CKM unitarity constraint is
dominated by the uncertainty in jVusj ¼ 0.2243ð5Þ.
Combined with our results presented here, a commensurate
reduction in the latter uncertainty would enhance the
impact of first row CKM unitarity tests.
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