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Despite extensive theoretical motivation for physics beyond the standard model (BSM) of particle
physics, searches at the Large Hadron Collider have found no significant evidence for BSM physics.
Therefore, it is essential to broaden the sensitivity of the search program to include unexpected scenarios.
We present a new model-agnostic anomaly detection technique that naturally benefits from modern
machine learning algorithms. The only requirement on the signal for this new procedure is that it is
localized in at least one known direction in phase space. Any other directions of phase space that are
uncorrelated with the localized one can be used to search for unexpected features. This new method is
applied to the dijet resonance search to show that it can turn a modest 2σ excess into a 7σ excess for a model
with an intermediate BSM particle that is not currently targeted by a dedicated search.
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The main goal of high energy physics is to identify the
elementary building blocks of matter and to characterize
the laws governing their motion. In order to achieve this
goal, experiments at the energy frontier collide particles
with extremely high momenta in a quest to directly produce
the elementary particles and study their interactions.
The collider currently able to directly probe the smallest
distance scales is the Large Hadron Collider (LHC).
Building on decades of effort at previous experiments,
the ATLAS and CMS Collaborations at the LHC discov-
ered the Higgs boson in 2012 [1,2], completing the
standard model (SM) of particle physics. While the SM
has been enormously successful, it is not a complete theory
of nature as it lacks a description of dark matter and gravity,
in addition to various technical or aesthetic problems.
Despite an intensive and impressive program to search
directly for physics beyond the SM at the LHC [3–7],
there is still no direct evidence for any new structures in
nature. However, there are numerous compelling theoreti-
cal motivations for physics beyond the SM (BSM) at
the energies scales accessible by the LHC [8]. While it
could be that the BSM particles are too massive or
produced with too low a cross section to be discovered
yet, it is also possible that the current search program is

simply not sensitive to the regions of phase space populated
by BSM physics.
In order to mitigate the possibility of uncovered regions of

phase space, collider experiments have implemented model-
independent anomaly detection techniques. Traditionally,
there are two such approaches: general searches and bump
hunts. The idea of general searches is to compare data and
simulations in a large number of event topologies, charac-
terized by the number and type of various physics objects,
such as leptons or hadronic jets, resulting from high energy
quark and gluon production [9–20]. While this approach has
a broad coverage, it is restricted to simple observables
because it relies heavily on simulations for background
estimation. In contrast, bump hunts [21] often do not use any
simulation for background estimation, other than tomotivate
and validate the background fit procedure: after identifying
a region of phase space where a signal is expected to be
localized, the background is fit with a smooth function and
interpolated to the signal-sensitive region. Excesses over
this background prediction would be an indication of BSM
physics. To enhance the resonance structure from a diobject
invariant mass, modern classification tools [22] can be used
select the target objects like the b quark [28,29], top quark
[30,31], W=Z [30,31], or Higgs boson [32,33] jets from
generic quark or gluon jets. However, these classifiers are
trained in simulation and calibrated in data, which may lead
to suboptimal classifiers. Furthermore, it is not possible in
this paradigm to develop classifiers for BSM objects, since
no calibration sample exists.
This Letter presents a new technique to search for BSM

physics that significantly extends the bump hunt approach
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that uses classifiers trained directly on data. Consider a
signal that is localized in one kinematic variable (the
resonant variable, mres) on top of a smoothly varying
background, for example, a dijet resonance that can be
reconstructed from the invariant mass of two jets. Suppose
that each event has additional auxiliary information (such
as the substructure in the two jets) that may provide
additional discriminating power between signal and back-
ground, but the detailed signal characteristics in these
auxiliary variables are unknown a priori. Our proposal
is that a classifier can be trained to discern the auxiliary
characteristics of the signal (if present) directly from data,
without reference to any specific signal model hypothesis.
The output of this classifier can then be used to select
signal-like events and reject background events, producing
a new distribution in the resonant variable that remains
smooth in the case that no signal was present, but that may
enhance the significance of the bump if a real signal is
present. In the event that a signal is discovered, the output
of the classifier can then be studied to infer the signal
characteristics.
The key feature of resonant signals that are utilized in

our approach is that their localization in one kinematic
variable on top of a smoothly varying background allows
the identification of potential signal-enhanced and signal-
depleted signal and sideband regions, respectively, with
almost identical background characteristics. A classifier
trained to distinguish the auxiliary characteristics of the
signal region events from those of the sideband may in
principle be as powerful as a classifier trained to distinguish
pure samples of signal and background events—this is a
specific application of classification without labels
(CWOLA) [34]. To see why this is the case, suppose that
it is possible to define an ideal sideband selection that
contains only a background and no signal, and an ideal
signal region that contains a background identical to that
in the sideband but also a small signal that is distinct from
the background. By the Neyman–Pearson lemma [35], the
most powerful test statistic for discriminating signal (sig)
events from background (bg) events using some observ-
ables Y is the likelihood ratio

LðYÞ ¼ pðYjsigÞ
pðYjbgÞ ; ð1Þ

and a fully supervised classifier is trained to approximate
any monotonic rescaling of this function. A classifier that is
trained to discriminate signal region events (sigþ bg) from
sideband region events (bg) will instead ideally learn to
approximate a monotonic rescaling of the function

L̂ðYÞ ¼ pðYjsigþ bgÞ
pðYjbgÞ ¼ fsig

pðYjsigÞ
pðYjbgÞ þ fbg; ð2Þ

where fsig and fbg are the proportions of signal and
background events in the signal region. The fact that

Eq. (2) is itself a monotonic rescaling of LðYÞ from
Eq. (1) shows that there is no fundamental obstruction
for the CWOLA-based classifier to identify the ideal
decision boundaries for signal selection. The above argu-
ment also holds if the sideband region has a small amount
of signal, as long as the signal proportion is less than the
signal region [34]. Practical limits will arise from limited
statistics (particularly for the signal) and other technical
difficulties that may obstruct a trainable classifier from
reaching the performance achievable with labeled simula-
tions, and also from the small differences in the background
characteristics between signal and sideband regions.
Our extended bump hunt procedure also has some

features in common with the sPlot [36] technique. In
particular, sPlot provides a method for determining the
distribution of multiple event classes for a resonant feature
(“control variable” in the language of Ref. [36]) using a set
of uncorrelated auxiliary features (“discriminating varia-
bles” in Ref. [36]). The key differences between sPlot and
the extended bump hunt are (1) we are interested in using
machine learning to isolate a signal-rich region of phase
space, and (2) we do not take the probability distribution for
the auxiliary features as input—the classification procedure
learns useful information directly from the data.
A danger that is present when training and testing a

classifier on the same data set is that it may overfit the
training data and learn the specific statistical fluctuations in
that data set rather than the true underlying distribution.
Classifiers used in this way will preferentially select signal-
region events based on their statistical fluctuations, and
they will create a fake bump in the resonance-variable
distribution even when no real signal is present. A simple
way to mitigate the background sculpting is to split the
underlying data set randomly into a training set and a test
set that will have uncorrelated statistical fluctuations. This
would, however, result in an effective loss of luminosity
available both for training and for testing. Instead we
advocate for an n-fold cross-validation procedure, in which
the data are randomly partitioned into n sets of equal size
(stratified by mres bin). The selection on each of the n
partitions is performed using the output of a classifier
trained and validated on the remaining n − 1 partitions,
resulting in a total of n classifiers. Any statistical fluctua-
tions learned by a classifier from its training data will be
uncorrelated with those in the data on which it is used for
event selection. The effects of overtraining on the perfor-
mance of the classifiers can be mitigated by a nested cross-
validation procedure, as is described in detail in Ref. [37].
In using the cross-validation procedure, there is a danger

that the bin counts become non-Poissonian due to corre-
lations between the selections, which would need to be
accounted for with computationally expensive test statistic
calibration based on a large number of simulated toys. If
this were found to be prohibitive in a specific application,
a simple test-train split remains a possibility to avoid this
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difficulty. However, we find in our tests that this does not
distort the test statistic distributions in our examples in
Ref. [37], and we find that asymptotic formulas [38] or
throwing toys, with counts based on the merged selected
events, provide accurate p values.
To summarize, the extended bump hunt algorithm

proceeds as follows, for a single resonance mass hypothesis
m̂res: (1) Identify an observable mres, in which a signal is
expected to be resonant, and a set of auxiliary variables Y
that are to be used for signal selection. The variables Y must
be independent of mres. There are a number of methods for
correcting this if not inherently true [39–46]. A background
model fðmresÞ is needed for mres. Typically (and in the
example below) this is done with a parametric fit, though
nonparametric methods are also possible [47]. (2) Define a
signal region in a window around m̂res. (3) Define sideband
regions that are disjoint from the signal region but still
sufficiently close that the background distribution in Y is
expected to be nearly identical. (4) Use a cross-validation
procedure to separate training samples from test samples.
For each test subsample: (a) Train a classifier to discrimi-
nate training events drawn from the sideband regions from
those drawn from the signal region, using variables Y.
(b) Select a fraction ϵ of the most signal-like test events as
determined by the classifiers. (5) Merge selected event
samples. (6) Perform a statistical test for the presence of an
excess in the signal region of the mres distribution after the
cut has been applied, using the data outside of the signal
region for a background determination using the back-
ground model fðmresÞ. The statistical analysis can be
performed using pseudoexperiments generated by subsam-
pling from the data itself. This procedure is repeated

starting from step (2) for a series of resonance mass
hypotheses, as in a usual bump hunt. This entails the usual
trials factor associated with the scan over the resonance
variable, but it does not invoke any additional trials factor
associated with the space of auxiliary variables. Using
asymptotic formulas [38] or throwing toys, with counts
based on the merged selected events, provides accurate p
values [37].
As a concrete example of the new bump hunting strategy,

suppose there is a new resonance that decays into unusual
jets. We do not know a priori how to look for the new
resonance, but we can consider the substructure of each jet
to look for an anomalous radiation pattern. The left plot of
Fig. 1 shows the invariant mass of two jet four-vectors in
simulated QCD dijet events [48]. To illustrate the power of
the technique, we have also injected events from the decay
of aW0 particle with a mass of 3 TeV. ThisW0 is constructed
to decay to aW boson (mW ≈ 80 GeV) and a new X particle
(mX ≈ 400 GeV), which itself decays into two W bosons,
as described in Ref. [52–54]. We consider the all-hadronic
channel in which each W boson decays into quark pairs.
The signal is thus characterized as having two large jets,
one with a two-prong substructure and one with a four-
prong substructure. The shaded histogram in the left plot
of Fig. 1 peaks at the resonance mass of 3 TeV with a broad
width due to jet fragmentation and clustering effects.
Without any selection on the jets’ substructure, there is
no significant indication of the signal hiding under the
smooth background from generic quarks and gluons.
To enhance the sensitivity of this search using the

extended bump hunt method described above, a suite of
classifiers are trained to distinguish a sliding signal region

FIG. 1. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled histogram) before and after applying jet
substructure cuts using the NN classifier output for the mJJ ≃ 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data
points outside of the signal region, with the gray bands representing the fit uncertainties. The top set of markers represent the raw dijet
distribution with no cut applied, while the subsequent sets of markers have cuts applied at thresholds with efficiency of 10−1, 10−2,
2 × 10−3, and 2 × 10−4. Right: Local p0-values for a range of signal mass hypotheses in the case that no signal has been injected (left),
and in the case that a 3 TeV resonance signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with efficiencies of 10−1, 10−2, and 2 × 10−3.
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from sideband regions. For each jet, the following sub-
structure information (Y) is used:

mJ;
ffiffiffiffiffiffiffi

τð2Þ1

q

=τð1Þ1 ; τ21; τ32; τ43; ntrk; ð3Þ
where mJ is the jet mass, ntrk is the number of charged
particles (tracks) in the ungroomed jet, the N-subjettiness

ratios are defined by τMN ¼ τð1ÞM =τð1ÞN , and the observables

τðβÞN are defined in Ref. [55].
The output of the classifiers are then used to select

signal-like events over the full range of the mJJ distri-
bution. The resulting distributions are shown in Fig. 1
(left) after applying thresholds on the NN output with
overall efficiencies 10%, 1%, 0.2%, and 0.02%, respec-
tively, in descending order. Prior to applying any thresh-
old, the resonant signal has S=B ¼ 6.4 × 10−3 and a
significance S=

ffiffiffiffi

B
p ¼ 1.8 in the signal region, and the

mJJ distribution has no discernible resonant feature.

However, after applying the threshold determined by the
classifier, a clear bump develops in the signal region with
local significance of 7σ at the 0.2% threshold. Of course, in
the event that the resonance mass is not known in advance,
then a scan must be performed over possible resonance
masses. It is important that the procedure does not create
fake bumps in the background when no signal is present.
We show in Fig. 1 (right) the p values obtained in the mass
scan over this distribution in the case that (a) no signal is
present, and (b) the case that the signal has been injected. We
find that no significant bumps are created in the signal-free
test. Furthermore, we find that traditional searches aimed
at finding diboson resonances using jet substructure-based
supervised learning algorithms (but for SM bosons) are not
able to enhance the significance of this signal for a wide
range of S=B and classifier working points [37].
In order to characterize the signal that the classifier has

found, we can study the distribution of selected signal-like
events, as illustrated in Fig. 2. We see that the classifier

FIG. 2. Two-dimensional projections of the twelve-dimensional feature space of the signal region data set. First column: all signal
region events. This is repeated in the other columns to aid comparisons. Second column: truth-level simulated signal events highlighted
in red. Third column: The red dots are the 0.2% most signal-like events selected by the classifier described in the text. Fourth column:
The red dots are the 0.2% most signal-like events selected by a classifier trained on the same sample but with true-signal events removed.
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trained in the presence of a true signal has identified a
population of events with a heavier jet with mass
mJA ≃ 400 GeV, a small number of tracks, and a small
τ43, as well as a lighter jet with mass mJB, a small number
of tracks, and a small τ21.
In conclusion, we have presented a new technique to

search for physics beyond the SM that requires very little
prior knowledge of the signal. The method was demon-
strated in simulation on an all-hadronic resonance search
at the LHC, where an uninteresting excess was enhanced to
a level of discovery. There are many other possibilities for
applying this technique directly to data, in any case where
the signal is expected to be localized in one dimension.
By naturally exploiting the power of modern machine
learning, we hope that this extended bump hunt will help to
expose new distance scales in nature on the quest for BSM
physics at the LHC and beyond.
The data sets and code used for the case study can be

found at Refs. [56,57].

We appreciate helpful discussions with and useful feed-
back on the manuscript from Timothy Cohen, Aviv
Cukierman, Patrick Fox, Jack Kearney, Zhen Liu, Eric
Metodiev, Brian Nord, Bryan Ostdiek, Francesco Rubbo,
and Jesse Thaler. We would also like to thank Peizhi Du for
providing the UFO file for the benchmark signal model.
The work of J. H. C. is supported by NSF under Grant
No. PHY-1620074 and by the Maryland Center for
Fundamental Physics (MCFP). The work of B. N. is
supported by the DOE under Contract No. DE-AC02-
05CH11231. This manuscript has been authored by Fermi
Research Alliance, LLC under Contract No. DE-AC02-
07CH11359 with the U.S. Department of Energy, Office of
Science, Office of High Energy Physics. The United States
Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States
Government retains a nonexclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for United
States Government purposes.

*jhc296@umd.edu
†khowe@fnal.gov
‡bpnachman@lbl.gov

[1] G. Aad et al. (ATLAS Collaboration), Observation of a new
particle in the search for the standard model Higgs boson
with the ATLAS detector at the LHC, Phys. Lett. B 716, 1
(2012).

[2] S. Chatrchyan et al. (CMS Collaboration), Observation of a
new boson at a mass of 125 GeV with the CMS experiment
at the LHC, Phys. Lett. B 716, 30 (2012).

[3] ATLAS Collaboration, Supersymmetry searches (2018),
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Supersy
mmetryPublicResults.

[4] ATLAS Collaboration, Exotic physics searches (2018),
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Exotics
PublicResults.

[5] CMS Collaboration, CMS exotica public physics results
(2018), https://twiki.cern.ch/twiki/bin/view/CMSPublic/
PhysicsResultsEXO.

[6] CMS Collaboration, CMS supersymmetry physics results
(2018), https://twiki.cern.ch/twiki/bin/view/CMSPublic/
PhysicsResultsSUS.

[7] CMS Collaboration, CMS beyond-two-generations (b2g)
public physics results (2018), https://twiki.cern.ch/twiki/
bin/view/CMSPublic/PhysicsResultsB2G.

[8] See e.g., J. R. Ellis, Beyond the standard model with the
LHC, Nature (London) 448, 297 (2007).

[9] ATLAS Collaboration, A model independent general
search for new phenomena with the ATLAS detector at
ffiffiffi

s
p ¼ 13 TeV, Technical Report No. ATLAS-CONF-2017-
001 (CERN, Geneva, 2017).

[10] CMS Collaboration, Model unspecific search for new
physics in pp collisions at

ffiffiffi

s
p ¼ 7 TeV, Technical Report

No. CMS-PAS-EXO-10-021 (CERN, Geneva, 2011).
[11] ATLAS Collaboration, A general search for new

phenomena with the ATLAS detector in pp collisions at
ffiffiffi

s
p ¼ 7 TeV, Technical Report No. ATLAS-CONF-2012-
107 (CERN, Geneva, 2012).

[12] ATLAS Collaboration, A general search for new
phenomena with the ATLAS detector in pp collisions at
ffiffiffi

s
p ¼ 8 TeV, Technical Report No. ATLAS-CONF-2014-
006 (CERN, Geneva, 2014).

[13] A. Aktas et al. (H1 Collaboration), A general search for new
phenomena in ep scattering at HERA, Phys. Lett. B 602, 14
(2004).

[14] F. D. Aaron et al. (H1 Collaboration), A general search for
new phenomena at HERA, Phys. Lett. B 674, 257 (2009).

[15] B. Abbott et al. (D0 Collaboration), Search for new physics
in eμX data at DØ using Sherlock: A quasi model
independent search strategy for new physics, Phys. Rev.
D 62, 092004 (2000).

[16] V. M. Abazov et al. (D0 Collaboration), A quasi model
independent search for new physics at large transverse
momentum, Phys. Rev. D 64, 012004 (2001).

[17] T. Aaltonen et al. (CDF Collaboration), Model-independent
and quasi-model-independent search for new physics at
CDF, Phys. Rev. D 78, 012002 (2008).

[18] T. Aaltonen et al. (CDF Collaboration), Global search for
new physics with 2.0 fb−1 at CDF, Phys. Rev. D 79, 011101
(2009).

[19] B. Knuteson, Ph.D. thesis, University of California,
Berkeley, 2000.

[20] B. Knuteson, Systematic analysis of high-energy collider
data, Nucl. Instrum. Methods A 534, 7 (2004).

[21] See e.g., analyses that cite Choudalakis, Georgios, On
hypothesis testing, trials factor, hypertests and the Bump-
Hunter, in Proceedings, PHYSTAT 2011 Workshop on
Statistical Issues Related to Discovery Claims in Search
Experiments and Unfolding, CERN,Geneva, Switzerland,
2011 (2011).

[22] The first use of jet substructure for new particle searches
were proposed in Refs. [23–25]; for recent theoretical and
experimental reviews, see Refs. [26,27], respectively.

PHYSICAL REVIEW LETTERS 121, 241803 (2018)

241803-5

https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G
https://doi.org/10.1038/nature06079
https://doi.org/10.1016/S0370-2693(04)01396-6
https://doi.org/10.1016/S0370-2693(04)01396-6
https://doi.org/10.1016/j.physletb.2009.03.034
https://doi.org/10.1103/PhysRevD.62.092004
https://doi.org/10.1103/PhysRevD.62.092004
https://doi.org/10.1103/PhysRevD.64.012004
https://doi.org/10.1103/PhysRevD.78.012002
https://doi.org/10.1103/PhysRevD.79.011101
https://doi.org/10.1103/PhysRevD.79.011101
https://doi.org/10.1016/j.nima.2004.07.050


[23] M. H. Seymour, Searches for new particles using cone and
cluster jet algorithms: A comparative study, Z. Phys. C 62,
127 (1994).

[24] J. M. Butterworth, B. E. Cox, and J. R. Forshaw, WW
scattering at the CERN LHC, Phys. Rev. D 65, 096014
(2002).

[25] J. M. Butterworth, A. R. Davison, M. Rubin, and G. P.
Salam, Jet Substructure as a New Higgs Search Channel
at the LHC, Phys. Rev. Lett. 100, 242001 (2008).

[26] A. J. Larkoski, I. Moult, and B. Nachman, Jet substructure
at the large hadron collider: A review of recent advances in
theory and machine learning, arXiv:1709.04464.

[27] L. Asquith et al., Jet substructure at the large hadron
collider: Experimental review, arXiv:1803.06991.

[28] ATLAS Collaboration, Optimisation and performance stud-
ies of the ATLAS b-tagging algorithms for the 2017-18
LHC run, Technical Report No. ATL-PHYS-PUB-2017-013
(CERN, Geneva, 2017).

[29] CMS Collaboration, Identification of b quark jets at the
CMS Experiment in the LHC Run 2, Technical Report
CMS-PAS-BTV-15-001 (CERN, Geneva, 2016).

[30] ATLAS Collaboration, Identification of hadronically-
decayingWBosons and top quarks using high-level features
as input to boosted decision trees and deep neural networks
in ATLAS at

ffiffiffi

s
p ¼ 13 TeV, Technical Report No. ATL-

PHYS-PUB-2017-004 (CERN, Geneva, 2017).
[31] CMS Collaboration, W and top tagging scale factors,

CERN, Report No. CMS-DP-2017-026, 2017.
[32] ATLAS Collaboration, Boosted Higgs (→ bb̄) Boson

identification with the ATLAS detector at
ffiffiffi

s
p ¼ 13 TeV,

Technical Report No. ATLAS-CONF-2016-039 (CERN,
Geneva, 2016).

[33] CMS Collaboration, Identification of double-b quark jets in
boosted event topologies, Technical Report No. CMS-PAS-
BTV-15-002 (CERN, Geneva, 2016).

[34] E. M. Metodiev, B. Nachman, and J. Thaler, Classification
without labels: Learning from mixed samples in high energy
physics, J. High Energy Phys. 10 (2017) 174.

[35] J. Neyman, IX. On the problem of the most efficient tests of
statistical hypotheses, Phil. Trans. R. Soc. A 231, 289 (1933).

[36] M. Pivk and F. R. Le Diberder, SPlot: A Statistical tool to
unfold data distributions, Nucl. Instrum. Methods A 555,
356 (2005).

[37] B. Nachman, J. Collins, and K. Howe, CWoLa hunting:
Extending the bumphuntwithmachine learning, in preparation.

[38] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymp-
totic formulae for likelihood-based tests of new physics,
Eur. Phys. J. C 71, 1554 (2011); Erratum, Eur. Phys. J. C 73,
2501 (2013).

[39] G. Louppe, M. Kagan, and K. Cranmer, Learning to pivot
with adversarial networks, arXiv:1611.01046.

[40] I. Moult, B. Nachman, and D. Neill, Convolved substruc-
ture: Analytically decorrelating jet substructure observables,
J. High Energy Phys. 05 (2018) 002.

[41] J. Dolen, P. Harris, S. Marzani, S. Rappoccio, and N. Tran,
Thinking outside the ROCs: Designing Decorrelated

Taggers (DDT) for jet substructure, J. High Energy Phys.
05 (2016) 156.

[42] C. Shimmin, P. Sadowski, P. Baldi, E. Weik, D. Whiteson,
E. Goul, and A. Sogaard, Decorrelated jet substructure
tagging using adversarial neural networks, Phys. Rev. D 96,
074034 (2017).

[43] J. A. Aguilar-Saavedra, J. H. Collins, and R. K. Mishra, A
generic anti-QCD jet tagger, J. High Energy Phys. 11 (2017)
163.

[44] ATLAS Collaboration, Performance of mass-decorrelated
jet substructure observables for hadronic two-body decay
tagging in ATLAS, Technical Report No. ATL-PHYS-PUB-
2018-014 (CERN, Geneva, 2018).

[45] J. Stevens and M. Williams, uBoost: A boosting method for
producing uniform selection efficiencies from multivariate
classifiers, J. Instrum. 8, P12013 (2013).

[46] A. M. Sirunyan et al. (CMS Collaboration), Search for
Low Mass Vector Resonances Decaying to Quark-
Antiquark Pairs in Proton-Proton Collisions at

ffiffiffi

s
p ¼13TeV,

Phys. Rev. Lett. 119, 111802 (2017).
[47] M. Frate, K. Cranmer, S. Kalia, A. Vandenberg-Rodes,

and D. Whiteson, Modeling smooth backgrounds and
generic localized signals with gaussian processes, arXiv:
1709.05681.

[48] Events are generated with Madgraph5_aMC@NLO v2.5.5
[49] + Pythia 8.226 [50] + Delphes 3.4.1 [51]. For further
details, see Ref. [37].

[49] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O.
Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro,
The automated computation of tree-level and next-to-
leading order differential cross sections, and their matching
to parton shower simulations, J. High Energy Phys. 07
(2014) 079.

[50] T. Sjostrand, S. Mrenna, and P. Z. Skands, A brief intro-
duction to PYTHIA 8.1, Comput. Phys. Commun. 178, 852
(2008).

[51] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V.
Lematre, A. Mertens, and M. Selvaggi (DELPHES 3
Collaboration), DELPHES 3, A modular framework for
fast simulation of a generic collider experiment, J. High
Energy Phys. 02 (2014) 057.

[52] K. Agashe, P. Du, S. Hong, and R. Sundrum, Flavor
universal resonances and warped gravity, J. High Energy
Phys. 01 (2017) 016.

[53] K. Agashe, J. H. Collins, P. Du, S. Hong, D. Kim, and
R. K. Mishra, Dedicated strategies for triboson signals from
cascade decays of vector resonances, arXiv:1711.09920.

[54] K. Agashe, J. H. Collins, P. Du, S. Hong, D. Kim, and R. K.
Mishra, Detecting a boosted diboson resonance, J. High
Energy Phys. 11 (2018) 027..

[55] J. Thaler and K. Van Tilburg, Identifying boosted objects
with N-subjettiness, J. High Energy Phys. 03 (2011) 015.

[56] B. Nachman, J. Collins, and K. Howe, CWoLa hunting:
Data sample, Mendeley data, DOI: 10.17632/57dh4b7f9m.1
(2018).

[57] B. Nachman, J. Collins, and K. Howe, CWoLa Hunting:
Code (2018), https://github.com/Jackadsa/CWoLa-Hunting.

PHYSICAL REVIEW LETTERS 121, 241803 (2018)

241803-6

https://doi.org/10.1007/BF01559532
https://doi.org/10.1007/BF01559532
https://doi.org/10.1103/PhysRevD.65.096014
https://doi.org/10.1103/PhysRevD.65.096014
https://doi.org/10.1103/PhysRevLett.100.242001
http://arXiv.org/abs/1709.04464
http://arXiv.org/abs/1803.06991
https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1098/rsta.1933.0009
https://doi.org/10.1016/j.nima.2005.08.106
https://doi.org/10.1016/j.nima.2005.08.106
https://doi.org/10.1140/epjc/s10052-011-1554-0
https://doi.org/10.1140/epjc/s10052-013-2501-z
https://doi.org/10.1140/epjc/s10052-013-2501-z
http://arXiv.org/abs/1611.01046
https://doi.org/10.1007/JHEP05(2018)002
https://doi.org/10.1007/JHEP05(2016)156
https://doi.org/10.1007/JHEP05(2016)156
https://doi.org/10.1103/PhysRevD.96.074034
https://doi.org/10.1103/PhysRevD.96.074034
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1007/JHEP11(2017)163
https://doi.org/10.1088/1748-0221/8/12/P12013
https://doi.org/10.1103/PhysRevLett.119.111802
http://arXiv.org/abs/1709.05681
http://arXiv.org/abs/1709.05681
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1016/j.cpc.2008.01.036
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP02(2014)057
https://doi.org/10.1007/JHEP01(2017)016
https://doi.org/10.1007/JHEP01(2017)016
http://arXiv.org/abs/1711.09920
https://doi.org/10.1007/JHEP11(2018)027
https://doi.org/10.1007/JHEP11(2018)027
https://doi.org/10.1007/JHEP03(2011)015
https://doi.org/10.17632/57dh4b7f9m.1
https://doi.org/10.17632/57dh4b7f9m.1
https://github.com/Jackadsa/CWoLa-Hunting
https://github.com/Jackadsa/CWoLa-Hunting

