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The problem of defining work done on an electromagnetic field (EMF) via moving charges does not
have a ready solution, because the standard Hamiltonian of an EMF—whose time derivative should define
the work according to the first law—is not gauge invariant. This limits applications of statistical mechanics
to an EMF. We obtained a new, explicitly gauge-invariant Hamiltonian for an EMF that depends only on
physical observables. This Hamiltonian allows us to define work and to formulate the second law for an
EMF. It also leads to a direct link between this law and the electrodynamic arrow of time, i.e., choosing
retarded, and not advanced solutions of wave equations. Measuring the thermodynamic work can
determine whether the photon mass is small but nonzero.
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Introduction.—Hamiltonian dynamics is essential for
statistical mechanics and thermodynamics [1–4]. Basic
distribution functions of statistical mechanics (e.g., canonical
or microcanonical) are formulated in the phase space and are
based on the conservation of energy and of the phase-space
volume (the Liouville’s theorem) [1–4]. Also the basic
quantities of thermodynamics—energy, work, and heat—
are defined via the Hamiltonian of the system; e.g., the
change of the time-dependent Hamiltonian defines the work
[4]. The first law divides energy intowork and heat [4], while
the second law limits work extraction via cyclic processes
[5]. The third law studies work as a resource for cooling [6].
Our aim is to understand an electromagnetic field (EMF)

as a thermodynamic and hence Hamiltonian system; the
research done on EMF from various angles (field-theoretic,
quantum, statistical, etc.) is reflected, e.g., in Refs. [7–14].
To this end, we need to understand the work done on EMF
via moving charges. We stress that thermodynamics and
electrodynamics share at least two structural features.
(1) Both study systems with many degrees of freedom.
(2) Both need specific subsystems (work sources) whose
motion is prescribed in the sense that the backreaction on
them is partially neglected. For thermodynamics these are,
e.g., vessels of a gas [4], while for EMF these are moving
charges [7]. Note that neglecting backreaction does not
mean neglecting the energy transfer which is the very point
of defining work [4].
Given these similarities, the work is to be defined via the

Hamiltonian of an EMF. But it appears that (for nonsta-
tionary charges) the change of the standard Hamiltonian for
an EMF is not gauge invariant. Hence we cannot apply it
for defining work. After discussing this issue, we determine
an explicitly gauge-invariant Hamiltonian of EMF that
(i) generates Maxwell’s equations via Hamiltonian equa-
tions, (ii) reduces to the standard expression for the free
EMF, (iii) allows us to define work. This work consists of

electrostatic and vortical contributions. (iv) If the work
done on EMF is measured independently, it can indicate on
whether the mass m of the photon holds m ¼ 0 or m > 0.
(v) The definition of work demonstrates an explicit relation
between thermodynamic arrow of time (i.e., the second
law) and the electrodynamic arrow of time. Despite
opinions expressed since the Ritz-Einstein debate [15],
the two arrows are so far regarded to be different from each
other [16–19].
The Lagrangian of a classical EMF.—for a given motion

of charged matter with density ρ and current Ji, the
Lagrangian reads [7]

LD ¼
Z

d3xLD; LD ¼ E2
i

2
−
B2
i

2
− ρϕþ JiAi; ð1Þ

Ei ¼ −∂iϕ − _Ai; i ¼ 1; 2; 3; ð2Þ

Bi ¼ ϵijk∂jAk; ϵiklBl ¼ ∂iAk − ∂kAi; ð3Þ

where Ei and Bi are (respectively) electric and magnetic
fields, ϕ and Ai are (respectively) scalar and vector
potential. We took c ¼ 1 and denoted the 3D coordinate
as x ¼ ðx1; x2; x3Þ [e.g., Ei ¼ Eiðx; tÞ]. Repeated space
indices imply summation, ∂i ≡ ∂=∂xi, _Ai ≡ ∂tAi, and
ϵijk is the totally asymmetric factor with ϵ123 ¼ 1.
LD refers to coordinates ϕðx; tÞ and Aiðx; tÞ and veloc-

ities _Aiðx; tÞ that are parametrized by a continuous index x
and discrete index i. Lagrange equations have the usual
form, but with variational derivatives

d
dt
½δLD=δ _AjðyÞ�¼δLD=δAjðyÞ; δLD=δϕðyÞ¼0: ð4Þ

Note that LD does not contain _ϕ, hence the last equation in
Eq. (4). When working out Eq. (4) we standardly assume
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that ρ, Ji, Ei, and Bi decay to zero at the spatial infinity,
apply integration by parts, and employ known formulas of
variational calculus, e.g., δAiðxÞ=δAjðyÞ ¼ δijδðx − yÞ
with Kronecker and Dirac’s deltas, respectively. Hence
we get from Eq. (4) equations of motion:

∂k
_ϕþ Äk ¼ ΔAk − ∂kð∂iAiÞ þ Jk; ð5Þ

Δϕ ¼ −ρ − ∂i
_Ai; ð6Þ

where Δ ¼ ∂i∂i is the Laplace operator. Equations (2) and
(3) show that Eqs. (5) and (6) become the Maxwell’s
equations

_Ei ¼ ϵijk∂jBk − Ji; ∂iEi ¼ ρ: ð7Þ

Equations (5) and (6) also imply the conservation of charge:

_ρþ ∂kJk ¼ 0: ð8Þ

The standard Hamiltonian of an EMF.—is constructed
from Eq. (1). An EMF is a singular system, since LD does
not contain _ϕ [20,21]. This singularity can be dealt with in
various equivalent ways, also via the full Dirac’s formalism
[20,21]. But the simplest way is to carry out the Legendre
transformation with respect to _Ai only [20,21]:

HD ¼
Z

d3xHD; HD ¼ pi
_Ai − LD; ð9Þ

where the canonic momentum pi is defined from

δHD=δ _AkðyÞ ¼ 0 or _Ai ¼ pi − ∂iϕ: ð10Þ

Putting Eq. (10) into HD, and making integration by parts
we arrive at [20,21]:

HD ¼ 1

2
p2
i þ

1

2
B2
i − JiAi þ ϕð∂ipi þ ρÞ; ð11Þ

where ϕ is now the Lagrange multiplier for the constraint
∂ipi þ ρ ¼ 0 [given also by Eqs. (4), (6), (10)]. Hamilton
equations of motion are read from Eq. (11) with canonic
coordinates Ai, momenta pi, and the Lagrange factor ϕ
[20,21]:

_Ai ¼ δHD=δpi; _pi ¼ −δHD=δAi; δHD=δϕ ¼ 0:

ð12Þ

Equations (12) bring back Eqs. (5) and (6). On the solutions
of Eqs. (5) and (6)—where we have Ei ¼ −pi from Eqs. (2)
and (10)—Hamiltonian HD ¼ 1

2
E2
i þ 1

2
B2
i − JiAi reduces

for Ji ¼ 0 to the known Poynting energy of a free EMF [7]

Efree ¼
1

2

Z
d3x½E2

i þ B2
i �: ð13Þ

Efree is energy, not a Hamiltonian, since it is not written in
canonical coordinates. Equation (13) includes the case of
free (and generically space localized) EMF fields.
Now HD is generally time dependent due to ρ and Ji. As

for any time-dependent Hamiltonian, we have

_HD ¼
Z

d3x

�
_Ai
δHD

δAi
þ _pi

δHD

δpi
þ _ϕ

δHD

δϕ

�
ð14Þ

þ
Z

d3xðϕ_ρ − _JiAiÞ: ð15Þ

Now Eq. (14) nullifies due to Eq. (12), so _HD is determined
by Eq. (15). Hence HD is conserved if _ρ ¼ _Ji ¼ 0, where
the Lagrangian Eq. (1) is time-translation invariant.
Equation (15) could be guessed directly from Eq. (1).
But we cannot apply HD and Eq. (15) for calculating

energy change. Recall that equations of motion Eqs. (5)–(7)
are invariant with respect to gauge change

ϕ → ϕþ _κ; Ak → Ak − ∂kκ; ð16Þ

where κðx; tÞ is arbitrary. This invariance relates to the zero
mass of an EMF [10]. Because of Eq. (8), the Lagrangian
Eq. (1) changes under Eq. (16) by a full time-derivative:
LD → LD − ðd=dtÞ R d3xρκ. Equation (15) also changes by
a full time-derivative under the gauge change (16)

_HD → _HD þ d
dt

Z
d3x_ρκ; ð17Þ

where we used Eq. (8). For a Lagrangian a shift by full
time-derivatives is allowed [22], but for a Hamiltonian it is
a problem, since it alters the energy change

R t2
t1

_HDdt
between t1 and t2. Now _HD is gauge invariant for a
particular case _ρðx; t1Þ ¼ _ρðx; t2Þ ¼ 0 for all x. This is
too restrictive for the definition of the energy change and
work. Indeed, in a standard task of thermodynamics a
many-body system (e.g., an EMF) is employed as an
energy storage; i.e., the time-dependent parameters are
driven by different sources that exchange work through the
system. For such cases it is simply necessary to calculate
the energy change up to a given time, because this is the
work that goes to one of the work sources.
The gauge variant _HD is not suitable for defining work.
Gauge-invariant Hamiltonian.—The following gauge-

invariant method starts with solving Eq. (6) via the inverse
Laplacian Δ−1 (see Sec. 1 of Ref. [25]):

ϕ ¼ −Δ−1ðρþ ∂i
_AiÞ≡ 1

4π

Z
d3y

ρðyÞ þ ∂i
_AiðyÞ

jx − yj : ð18Þ

We put back Eq. (18) into LD thereby eliminating ϕ. In
subsequent calculations, see Sec. 1 of Ref. [25], we neglect
one full time-derivative (allowed for a Lagrangian), and
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also full space derivatives, due to boundary conditions. We
then get a new Lagrangian that depends on the magnetic
field Bi and on ρ:

L ¼
Z

d3xL;

L ¼ 1

2
ρΔ−1ρ −

1

2
_BiΔ−1ð _BiÞ −

1

2
BiBi − BiΔ−1ðRiÞ; ð19Þ

Ri ≡ ϵijk∂jJk; i:e:; R⃗ ¼ rotJ⃗: ð20Þ

Equation (19) comes with a constraint that follows from
Eq. (3)

∂jBj ¼ 0; ð21Þ

and confirms that an EMF has two independent
coordinates.
In equations of motion ðd=dtÞðδL=δ _BkðyÞÞ ¼

ðδL=δBkðyÞÞ we use

δL=δ _BkðyÞ ¼ −Δ−1ð _BkÞðyÞ≡ ΠkðyÞ: ð22Þ

This leads to autonomous equations for Bi that can be also
derived from the Maxwell’s equations, Eq. (7),

B̈i − ΔBi − Ri ¼ 0: ð23Þ

Using Eq. (22) we introduce the canonical momentum Πk
via Eq. (22) and construct from Eq. (19) the Hamiltonian
via the usual Legendre transformation

H ¼
Z

d3x½Πk
_Bk − L� ¼ HB þ ES; ð24Þ

ES ≡ −
1

2

Z
d3xρΔ−1ρ ¼

Z
d3x
2

ðΔ−1½∂iρ�Þ2 ≥ 0; ð25Þ

HB ¼
Z

d3x

�
−
ΠiΔΠi

2
þ BiBi

2
þ BiΔ−1ðRiÞ

�
; ð26Þ

where constraint Eq. (21) is implied. Thus Hamiltonian H
amounts to the electrostatic part ES (see Sec. 2 of Ref. [25])
and the magnetic part HB. The latter consists of the free
magnetic part and the interaction term:

R
d3xBiΔ−1ðRiÞ.

Hence ρ and Ri emerged as time-dependent parameters of
H. We emphasize that they can be given independently, in
contrast to ρ and Ji that relate to each other via Eq. (8).
Indeed, any Ji is represented as Ji ¼ ∂iψ þ ϵijk∂jQk

(Helmholtz’s decomposition; see Sec. 3 of Ref. [25]).
Then ρ relates to ψ via Eq. (8): _ρþ Δψ ¼ 0, while Ri

relates to Qi only: R⃗ ¼ rot rotQ⃗. Once ψ and Qk can be
independent from each other, so are ρ and Ri.
(i) Equation (23) can be reproduced from Eq. (26) via

Hamilton equations _Πk¼ðδH=δBkÞ and _Bk ¼ −ðδH=δΠkÞ.
Note that ES drops out from equations of motion. Hence for

_Ri ¼ 0, the magnetic Hamiltonian is conserved _HB ¼ 0;
cf. Eq. (26). A related law: H in Eq. (24) is conserved,
_H ¼ 0, if _Jk ¼ 0 and ρ is always bounded; see Sec. 3
of Ref. [25].
(ii) Let us relate Eq. (24) to Poynting’s energy;

cf. Eq. (13) and see Sec. 6 of Ref. [25] for details. For
general discussions on Poynting’s energy; see Ref. [26].
Apply ϵnmi∂m to both sides of the Maxwell’s equation

ϵijk∂jEk ¼ − _Bi [deduced from Eqs. (2) and (3)] and
employ there Eq. (7). Then we can express Ei via _Bk
and ∂iρ:

Ei ¼ Δ−1ð∂iρþ ϵijk∂j
_BkÞ: ð27Þ

We put Eq. (27) into Eq. (13), and integrate by parts using
Eq. (21):

Z
d3x

E2
i þ B2

i

2
¼ HjRi¼0 ¼ ES þHBjRi¼0: ð28Þ

Under _Ri ¼ 0, HB is conserved in time, and hence the
change in time of Poynting’s energy 1

2

R
d3xðE2

i þ B2
i Þ

reduces to the change of ES. Note the difference between
Eqs. (13) and (28): Eq. (13) assumes Ji ¼ 0; hence it allows
only electrostatics (_ρ ¼ 0). But Eq. (28) uses only Ri ¼ 0;
hence it does allow for motion of charges.
(iii) We study the thermally isolated case, where all

canonic coordinates Bi and momenta Πi are kept in the
description; i.e., no system-environment division is made.
Then the work is defined via _H, which is the statement of
the first law [1–4]. Using equations of motion _Πk ¼
ðδHB=δBkÞ and _Bk ¼ −ðδHB=δΠkÞ we get from Eq. (26)
[cf. Eq. (14)]:

_H ¼ _ES þ _HB ¼ _ES þ
Z

d3xBiΔ−1ð _RiÞ: ð29Þ

_H consists of two parts: electrostatic _ES½ρ� and magnetic
_HBðRiÞ; cf. Eq. (20). _ES does not depend on fields, it
depends only on the externally controlled ρðx; tÞ. Hence it
is always reversible, e.g., ESðt1Þ ¼ ESðt2Þ for cyclic
changes of ρ: ρðx; t1Þ ¼ ρðx; t2Þ. Hamiltonians containing
time-dependent, nondynamic terms were discussed in
Ref. [27]. Generally, such terms cannot be omitted, since
they contribute to the reversible part of work.
(iv) What if a photon has a small but nonzero mass m?

Because of its foundational importance, has been pondered
in physics for decades [10–13]. Experiments put stringent
bounds on m [10], but they cannot show that m ¼ 0. Even
within such bounds m > 0 can be relevant, e.g., in
cosmology [12,13]. We show thatm > 0 leads to a different
definition of work. Recall that massive electrodynamics is a
consistent theory [10,11] (see Sec. IV of Ref. [25]) that
amounts to adding to LD in Eq. (1) the massive term
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ðm2=2Þðϕ2 − A2
i Þ. This changes equations of motion

Eqs. (5) and (6) by adding −m2Ak to the rhs of Eq. (5)
and m2ϕ to the rhs of Eq. (6). New equations produce
_ρþ ∂kJk ¼ m2ð _ϕþ ∂kAkÞ. Hence the charge conservation
Eq. (8) and m > 0 lead to the Lorenz gauge _ϕþ ∂kAk ¼ 0
[10]. Then Eq. (15) still applies for the change of the total
Hamiltonian, but now no gauge-transformation Eq. (16)
can be made. Hence Eq. (15) is consistent for m > 0.
Moreover, for m > 0 the method of Eq. (18) can be
implemented, but it does not lead to a Lagrangian (or
Hamiltonian) description of Ai; see Sec. 4 of Ref. [25].
Hence Eqs. (15) and (29) provide consistent and different
definitions of work for (respectively) m > 0 and m ¼ 0. If
the work done on an EMF can be measured independently,
this will show whether or not a photon has mass.
Arrows of time.—Given the Hamiltonian system

Eq. (26), we can develop for it statistical mechanics,
e.g., assuming Gibbsian initial distribution for coordinates
Bi and momenta Πi. Here we focus on a specific, but
important situation of the second law: let Ri be switched on
at some initial time, and there is no magnetic field before
that time: Riðx; tÞ ¼ Biðx; tÞ ¼ Πðx; tÞ ¼ 0 for t ≤ 0. This
implies the zero-temperature initial Gibbs distribution.
With these initial conditions, Eq. (23) shows that Biðx; tÞ

for t > 0 relates to Ri via the retarded solution [7]

Biðx; tÞ ¼
1

4π

Z
d3y

jx − yjRiðy; t − jx − yjÞ: ð30Þ

We get from Eqs. (29) and (30), for the magnetic work,

_HB ¼
Z

d3xBiΔ−1ð _RiÞðx; tÞ ¼ −
1

ð4πÞ2
Z

d3x

×
Z

d3yRiðy; t − jx − yjÞ
jx − yj

Z
d3z _Riðz; tÞ
jx − zj : ð31Þ

For illustration we calculate Eq. (31) for well-localized
Riðy; tÞ, e.g., Riðy; tÞ ≃ fiðtÞδðyÞ; cf. Sec. 5 of Ref. [25].
Using this in Eq. (31), and going to spherical coordinates inR
d3x, we end up with

_HB¼−
χiðtÞχ̈iðtÞ

4π
; χiðtÞ≡

Z
d3x

Z
t

0

dsRiðx;sÞ;

HBðtÞ−HBð0Þ¼
Z

t

0

ds
4π

½_χiðsÞ�2−
1

4π
χiðtÞ_χiðtÞ: ð32Þ

If we impose cyclicity assuming that besides Riðy; tÞ ¼ 0
for t ≤ 0, it also holds Riðy; τÞ ¼ 0, then _χiðτÞ ¼ 0 in
Eq. (32). Hence we get the statement of the second law
(Thomson’s formulation) for cyclic processes [5]

HBðτÞ−HBð0Þ ≥ 0 if Riðx; tÞ ¼ Biðx; tÞ ¼ 0 for t ≤ 0

and Riðx; tÞ ¼ 0 for t > τ; ð33Þ

i.e., an EMF gains energy in cyclic processes.
Equation (33) holds for any cyclic variation; see Sec. 5
of Ref. [25] that cites Ref. [28]. The usage of a localized
Riðx; tÞ in Eq. (32) was for illustration only.
The above derivation was done assuming initial con-

ditions. Alternatively, we can employ final conditions
assuming that Riðx; tÞ ¼ Biðx; tÞ ¼ 0 for t > τ. Then the
connection between Riðx; tÞ and Biðx; tÞ ¼ 0 for t < τ is to
be given via the advanced solution of Eq. (23):

B½ad�
i ðx; tÞ ¼ 1

4π

Z
d3y

jx − yjRiðy; tþ jx − yjÞ: ð34Þ

The fact that normally one employs a retarded solution,
Eq. (30), via initial conditions, and not the advanced
solution Eq. (34) via final conditions, amounts to the
electrodynamic arrow of time [16–19].
Repeating the above steps and imposing the cyclicity

condition Riðx; tÞ ¼ 0 for t < 0, we get instead of Eq. (32):
HBðτÞ −HBð0Þ ¼ −

R
τ
0 ðds=4πÞ½_χiðsÞ�2. Now instead of the

second law we got its opposite: the energy is extracted from
an EMF; again this holds more generally, see Sec. 5 of
Ref. [25]. Hence we linked the thermodynamic arrow of
time (second law in Thomson’s formulation) and the
electrodynamic arrow. Relations between the cosmological
and thermodynamical arrows were explored in Ref. [29].
Work vs radiation.—We emphasize that Eq. (33) does

not describe all forms of irreversibility. For example, taking
in Eq. (29) a rectilinear motion (along x1 axes) of charges
with time-dependent acceleration, J̈1ðx1; tÞ ≠ 0 and J2 ¼
J3 ¼ 0, we get _HB ¼ 0 due to Ri ¼ 0; cf. Eq. (20). But in
this case there is radiation [7], which is an irreversible
phenomenon. It is natural that we do not see it on the
considered level of full energies. Once we consider finite
times and fields nullifying at infinity, all the radiation is at
finite distances from its sources, and hence Eq. (26)—
defined via an integral over the whole space—also contains
the (approximately) spherical wave that is responsible for
radiation. Indeed, for all cases, where Riðx; tÞ ¼ 0 at all
times, but radiation is present, we get from Eq. (26) that H
amounts to the conserved magnetic energy HB plus the
reversible electrostatic energy ES; see Eq. (25). Thus H
does not show irreversibility for those cases.
On the other hand, if in Eq. (33)HBðτÞ −HBð0Þ > 0 due

to a cyclic Riðx; tÞ, then there generically will be radiation.
But we yet do not known whether this is always the case
(not just generically), since there are specific configurations
with _Riðx; tÞ ≠ 0 that do not radiate [30]. Their implica-
tions are to be clarified.
In conclusion, we found a new gauge-invariant

Hamiltonian, Eqs. (24)–(26), for an electromagnetic field
that holds desiderata for defining work. In particular, it
leads to the second law, relates it with the electrodynamic
arrow of time, and differs from the Hamiltonian obtained in
the limit of vanishing photon mass. This Hamiltonian
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should help for constructing the nonequilibrium thermo-
dynamics of an EMF. Several problems are left open:
(1) Relations between work and radiation; see above.
(2) The local (finite-volume) version of energy given by
HB; cf. Ref. [31]. (3) Physical meaning of the canonic
momentum Eq. (22). (4) More general (including thermal)
initial states from which one can deduce the second law for
the work done on an EMF and relate it with the electro-
dynamic arrow. (5) Backreaction from the charged matter.
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