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There is a misconception, widely shared among physicists, that the equilibrium free energy of a one-
dimensional classical model with strictly finite-ranged interactions, and at nonzero temperatures, cannot
show any singularities as a function of the coupling constants. In this Letter, we discuss an instructive
counterexample. We consider thin rigid linear rods of equal length 2l whose centers lie on a one-
dimensional lattice, of lattice spacing a. The interaction between rods is a soft-core interaction, having a
finite energy U per overlap of rods. We show that the equilibrium free energy per rod F ½ðl=aÞ; β�, at
inverse temperature β, has an infinite number of singularities, as a function of l=a.
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There is a common belief among physicists that in any
one-dimensional (1D) classical system, in thermal equilib-
rium, having strictly finite-ranged pairwise interactions, the
thermodynamic potential cannot show a singular depend-
ence on the control parameters [1]. The origin of this folk
wisdom is perhaps an unsubstantiated generalization of a
rigorous result due to van Hove [2] on the absence of phase
transitions in a one-dimensional system of particles with a
nonvanishing hard-core length and finite-ranged interpar-
ticle interaction. This result was later extended to lattice
models [3] and long-ranged interactions having a power-
law decay with distance [4–6]. The belief relies on
essentially two (correct) arguments: one, about the absence
of phase transitions as a function of temperature in 1D
models having a finite-dimensional irreducible transfer
matrix and second, the Landau argument about the absence
of symmetry breaking in 1D systems, when creating a
domain wall has a finite energy cost [7]. Several counter-
examples of equilibrium phase transitions in 1D models
have been known for a long time: DNA unzipping [8,9],
interface depinning [10], hidden-state model [11], and
condensation in zero-range models [12]. But, the incorrect
belief persists. A necessary and sufficient condition for the
existence of phase transitions in 1D systems is hard to
formulate. This question was discussed in some detail
recently by Cuesta and Sanchez [13], who provided a
sharper criteria for the absence of phase transitions, based
on a generalized Perron-Frobenius-Jentzsch theorem. The
general understanding is that singularities in the free energy
come from the degeneracy of the largest eigenvalue of the
transfer matrix which can occur when the conditions
required for the Perron-Frobenius-Jentzsch theorem to hold
are not met.

In this Letter, we discuss an example of a 1D system that
undergoes an infinite number of phase transitions, even
though the largest eigenvalue remains nondegenerate. The
singularities are robust, geometrical in origin, and come
from the singular changes in the Boltzmann weights as a
function of the separation between particles (for a similar
origin of singularities in pair-correlation function of 2D
disks see [14]). This is a simple, instructive example, and it
uses a different mechanism of generating singularities in
the thermodynamic functions than the earlier models
studied. In particular, it gives singular behavior even for
finite systems.
In its simplest version, the model consists of soft linear

rigid rods of equal length 2l, whose midpoints are fixed at
the lattice sites of a 1D lattice of lattice spacing a. The rods
are free to rotate in the plane, as illustrated in Fig. 1, where
a configuration of N rods is specified by a set of N angles
θi, with 0 ≤ θi ≤ π, for i ¼ 1 to N. We assume that there is
an interaction between the rods, which depends on their
overlap. Each overlap between a pair of nearest neighbor
rods costs a constant energy U1; between a pair of next
nearest neighbors the overlap energy is U2, and so on.

FIG. 1. A configuration of seven rods on a line. Here, a is the
spacing between rods. In the displayed configuration, the number
of nearest neighbor overlaps n1 ¼ 3 and the number of next
nearest overlaps n2 ¼ 1.
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Let nr be the number of pairs of the rth neighbor rods
that overlap (see Fig. 1). Clearly, nr is zero, if r > ð2l=aÞ.
The total energy of the system is

H ¼
X
i

niUi: ð1Þ

This is similar to the hard-rod model that has been studied a
lot in the literature, starting with Onsager [15–18]. It differs
in two significant ways: the centers of the rods are fixed on
a lattice, and we allow Ui to be of any sign (attractive or
repulsive). A somewhat similar model of nonspherical
molecules whose centers are fixed at equispaced points
along a line, but orientations can change, was studied
in [16].
Let F ½ðl=aÞ ¼ κ; β� denote the free energy per rod of

this system, in equilibrium, at inverse temperature β. We
will show that F ðκ; βÞ is an analytic function of β, as
expected, but has a nonanalytic dependence on κ. In fact,
there are infinitely many transitions: as κ is varied, F ðκ; βÞ
is singular at every positive integer values of κ, for all β.
The singularities remain unchanged irrespective of the sign
of Ui, whether the interaction is repulsive or attractive. We
will show that there are also other singularities at some
noninteger values of κ. For example, the probability
distribution of orientations changes qualitatively when κ

is changed across 1=
ffiffiffi
2

p
.

For simplicity of presentation, we begin with the simple
case: U1 ¼ ∞. This is the case of hard rods, where no
nearest-neighbor overlaps are allowed, thus ni ¼ 0 for all
i ≥ 1. Then, without loss of generality, we may assume
Ui ¼ 0 for all i ≥ 2, which corresponds to only nearest
neighbor hard-core interactions. In this case, let F 1ðκÞ
denote the free energy per site in the thermodynamic limit
(due to hard-core interactions it has no dependence on β
and is hence omitted). Then, using the transfer matrix
technique, F 1ðκÞ ¼ − logΛðκÞ, where ΛðκÞ is the largest
eigenvalue of the integral equation

ΛðκÞψκðθÞ ¼
Z

π

0

dθ0

π
Tκðθ; θ0Þψκðθ0Þ; ð2Þ

with ψκðθÞ being the associated eigenvector. The transfer
matrix Tκðθ0; θÞ has matrix elements 0 or 1 depending on
whether a pair of nearest neighbor rods with angles ðθ0; θÞ
overlap or not.
Wewill show below that this system shows three types of

singularities: (i) F 00
1ðκÞ is discontinuous at κ ¼ 1=2, (ii) for

κ near 1, say κ ¼ 1þ ε, with jεj ≪ 1, F 0
1ðκÞ diverges as

logðjεjÞ, and (iii) for ð1= ffiffiffi
2

p Þ < κ < 1, the probability
distribution of orientations PκðθÞ has square-root singular-
ities as a function of θ, which are not present for lower
values of κ.
The numerical verification of these analytical results is

shown in Figs. 2–4, obtained by numerically diagonalizing

the transfer matrix, using 1000 grid points for the integra-
tion range of θ ¼ ½0; π�. In Fig. 2, F 0

1ðκÞ is exactly zero for
κ < 1=2, and nonzero for κ > 1=2, initially increasing
linearly. Near κ ¼ 1, it has a sharp peak. In Fig. 3,
F 0

1ðκÞ shows a nearly linear dependence on log jκ − 1j.
We determine the probability distribution of orientations

PκðθÞ from the eigenvector ψκðθÞ of the transfer matrix.
This is plotted in Fig. 4. For κ < 1=2, all angles are equally
likely, and PκðθÞ takes a constant value π−1. For 1=2 <
κ < ð1= ffiffiffi

2
p Þ, PκðθÞ has a nontrivial dependence on θ when

j cos θj > ð1=2κÞ, but the derivative P0
κðθÞ remains finite.

In the range ð1= ffiffiffi
2

p Þ < κ < 1, PκðθÞ has a square-root cusp
singularity, when sin θ ¼ κ. There is no clear signature of
this singularity in the functional dependence of F 1ðκÞ on κ.
The source of these singularities is geometric in nature,

and can be seen most simply in the structure of the transfer
matrix. This is illustrated in Fig. 5. Here, the shaded regions
in the θ-θ0 plane correspond to values of ðθ; θ0Þ where
the rods intersect, and the matrix element Tκðθ; θ0Þ is 0,
whereas the plain regions correspond to nonintersecting
rods, and the matrix element Tκðθ; θ0Þ is 1. The equation of

FIG. 2. First derivative of the free energy F 0
1ðκÞ for hard-core

nearest neighbor interaction between rods (U1 ¼ ∞). The inset
shows the monotonic increase of F 1ðκÞ as a function of κ.

FIG. 3. Logarithmic divergence of the first derivative of the free
energy F 0

1ðκÞ near κ ¼ 1, for U1 ¼ ∞.
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the boundary of the shaded region is easily written down
from simple geometry (see Supplemental Material [19] for
details). As κ is increased, the shaded regions grow in
size, and the eigenvalue of the transfer matrix decreases.
For ð1= ffiffiffi

2
p Þ < κ < 1, the slope of the boundary of the

shaded region becomes infinite or zero at some points.
When κ ¼ 1, the boundary becomes a set of straight lines.
For κ > 1, the two shaded patches, which are disjoint when
κ < 1, merge into a single connected shaded region. We
will show that precisely these topological changes in the
structure of the available phase space lead to the singular-
ities in the free energy function F 1ðκÞ. As noted above,
these arguments hold even for finite systems.
Let us first discuss the singularity at κ ¼ 1=2. For

κ < 1=2, no overlap is possible, and the rods can orient
freely without any cost of energy. The associated transfer
matrix Tκðθ0; θÞ ¼ 1 for all angles, and there are no shaded
regions. The largest eigenvalue is ΛðκÞ ¼ 1 and the
corresponding eigenvector ψκðθÞ ¼ constant. As κ is
increased beyond 1=2 the nearest neighbor interaction sets
in. If we define κ ¼ ð1=2Þ þ ε, then it is easily seen that

for small ε > 0, the area of the shaded regions in the θ-θ0

plane grows as ε2. Then, treating the shaded regions as
perturbation, the first order perturbation theory immedi-
ately gives

Λð1=2þ εÞ ¼ 1 − Cε2 þ higher order in ε: ð3Þ

We find that the constant C ¼ ð32=3π2Þ (details in the
Supplemental Material [19]). Thus, at κ ¼ 1=2, the second
derivative of the free energy F 00

1ðκÞ with respect to κ is
discontinuous.
We nowdiscuss the singularity at κ ¼ 1. For this value, the

boundary of the excluded region in the θ-θ0 plane becomes a
set of straight lines (see Fig. 5). Then, the transfer matrix
Tκðθ0; θÞ can be exactly diagonalized by converting the
integral eigenvalue equation (2) into a second order differ-
ential equation (see Supplemental Material [19]). We find
that the largest eigenvalue of the transfer matrix for κ ¼ 1 is
given by Λð1Þ ¼ ½3 ffiffiffi

2
p

arcsinð1=3Þ�−1. For κ near 1, if we
write κ ¼ 1 − ε and defineΔT ¼ T1−ε − T1, then, to the first
order in ε, the change in the eigenvalue ΛðκÞ equals
hψ1jΔTjψ1i, where ψ1ðθÞ is the eigenvector of the transfer
matrix corresponding to the largest eigenvalue at κ ¼ 1. This
change is shown in Fig. 6. The curved boundary of the
disallowed region near ðθ; θ0Þ≡ ½0; ðπ=2Þ� tends to a hyper-
bola, and as ε tends to zero, the area of the shaded region in
Fig. 6 tends to zero, but only as ε logð1=εÞ. Moreover, the
eigenvector ψ1ðθÞ is positive everywhere, with the ratio
between its maximum andminimumvalues remaining finite.
This implies that the change in the matrix element has the
same qualitative dependence on ε as the area of the shaded
regions. Therefore, we conclude that

Λð1 − εÞ ¼ Λð1Þ þ K1ε log
1

ε
þ K2εþ higher order; ð4Þ

where K1 and K2 are positive constants. A similar argument
holds for negative ε (see Supplemental Material [19]).
We now discuss the singularity at κ ¼ ð1= ffiffiffi

2
p Þ. For this,

we consider the range ð1= ffiffiffi
2

p Þ < κ < 1, and define θ0 ¼
arcsin κ. Then, as long as the angle of a rod θ ∈ ½θ0; π − θ0�,
it can be easily seen, that there is no overlap with its
neighbor for any angle θ0 of the latter. On the other hand, if

FIG. 4. Probability distribution of the orientation of the rods
generated from the eigenvector ψκðθÞ associated to the largest
eigenvalue of the transfer matrix.

FIG. 5. The transfer matrix Tκðθ0; θÞ on the θ-θ0 plane, for
different values of κ. The shaded regions denote ðθ; θ0Þ values
where the rods overlap, and Tκ ¼ 0. In the plain regions rods do
not overlap and Tκ ¼ 1.

FIG. 6. The picture shows the matrix ΔT ¼ T1−ε − T1, for ε ¼
0.02 on the θ-θ0 plane. In the shaded region ΔT ¼ 1, whereas in
the plain region it is 0. The area of the shaded region varies as
ε logð1=εÞ, for small ε.
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θ is outside this interval, the rods can intersect, if θ0 lies in
the intervals ½ϕ1;ϕ2� and ½π − ϕ2; π − ϕ1�, with the expres-
sion for ϕ1 and ϕ2 given in the Supplemental Material [19].
The important point is that the length of the intervals
jϕ2 − ϕ1j varies as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
θ0 − θ

p
for θ → θ0. Then, from the

eigenvalue equation (2), we see that

ψκðθÞ ¼ K3 − K4

Z
ϕ2ðθÞ

ϕ1ðθÞ
ψκðθ0Þdθ0; ð5Þ

where K3 and K4 are functions of κ only. Using this fact
that ψκðθ0Þ is bounded by nonzero constants, both from
above and below, we see that, for θ approaching θ0 from
below

ψκðθÞ ≈ K3 − K5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
θ0 − θ

p
; ð6Þ

where K5 depends only on κ. This shows that ψκðθÞ has a
cusp singularity at θ ¼ θ0. As the probability density PκðθÞ
is proportional to ψκðθÞ2, it also has a cusp singularity at θ0.
Our above arguments can be readily generalized to the

case of soft rods (U1 ≠ þ∞), but keepingUi ¼ 0 for i > 1.
The matrixΔT only gets multiplied by a factor ð1 − e−βU1Þ.
In fact, one can even determine the exact eigenvalues of the
transfer matrix at κ ¼ 1, for an arbitrary pair-potential U1.
This is given by (see Supplemental Material [19])

Λð1Þ ¼ ð1 − e−βU1Þ
3

ffiffiffi
2

p
�
arctan

ð1 − e−βU1Þffiffiffi
2

p ð2þ e−βU1Þ

�−1
: ð7Þ

For soft pairwise interactions, overlaps between pairs of
rods beyond the nearest neighbors are allowed. In the case,
where such overlaps cost a nonzero amount of energy, i.e.,
Ui ≠ 0 for i > 1, one can treat these pair interactions Ui, as
perturbations to the problem with only nonzero U1. Noting
that the overlap region in the ðθj; θjþiÞ plane, for i > 1,
again has a similar hyperbolic shape, we see that at all
integer values of κ ¼ i the largest eigenvalue ΛðκÞ has
singularities of the form Uiði − κÞ log j½1=ðκ − iÞ�j.
In Fig. 7, we present evidence of these additional tran-

sitions from Monte Carlo simulations. We took Ui ¼ 1 for
all i. Clearly, hθi ¼ ðπ=2Þ, for all κ. A signature of the
transitions can be seen in the variance of the angle defined by
hM2i ¼ ð1=NÞhfPi½θi − ðπ=2Þ�g2i. The variance clearly
shows a singularity at all integer values of κ. Also, the
positions of the singularities do not depend on the value of β,
as long as it remains nonzero.
It is clear that the conditions for applicability of the van

Hove theorem are not met. As the theorem demands, the
matrix elements are analytic functions of β; however, in our
case they are nonanalytic (in fact discontinuous) functions
of the control parameter κ. This nonanalyticity is generic to
all hard-core (or soft-core) models, and is at the root of the
singular behavior found in the problem discussed here.

The free energy Fðκ; βÞ is a nonconvex function of κ
(see inset of Fig. 2). Here, κ is a parameter that specifies the
number of rods per unit length, and convexity of the free
energy as a function of density is a fundamental property,
which is essential for thermodynamic stability. In our
model, the spacing between particles is fixed and cannot
be changed. Hence a convex envelope construction, in the
manner of Maxwell, is not possible, and convexity is not
assured. In fact, if the spacing between rods is allowed to
vary, then the free energy has no singularities, in agreement
with all the previous studies of this model [16–18].
Additionally, for all finite κ, the correlation length

remains finite, as the largest eigenvector remains non-
degenerate. Moreover, the behavior of the free energy is
different from the familiar first order phase transitions.
Here, the first derivative of the free energy diverges near the
transition points, but the correlation length remains finite.
It is easy to construct other models which show similar

behavior. For example, consider a chain of Ising spins σi,
placed on a lattice of uniform spacing a. The Hamiltonian
of the system is H ¼ −

P
ði;jÞJðrijÞσiσj, where JðrÞ is a

distance-dependent exchange interaction JðrÞ, and rij is
the distance between the sites i and j. If we choose,
JðrÞ ¼ 1 − r, for 0 < r < 1, and zero for r > 1, there is no
long-range order in the problem. However, as the lattice
spacing a is varied, the free energy becomes a nonanalytic
function of a, at all integer values of 1=a, following the
same reasoning as in our model.
Varying lattice spacing is not merely a theoretical pos-

sibility. In molecular solids [20] thermal expansion can
change the lattice spacing, in a polymer chain [21] they
can be stretched using optical tweezers. In cold atoms lattice
spacing can be directly controlled [22]. We hope that the
transitions discussed here can be experimentally realized, in
systems with large elastic constants, which suppresses local
fluctuations in atom spacings, or in experiments in optical
lattices, especially as it occurs also in finite systems.

FIG. 7. Variance of the angular distribution of rods generated
from Monte Carlo simulations of a system of 100 rods and
averaged over 106 sample configurations.
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In summary, we have discussed a mechanism of phase
transitions, which is simple, but has not been sufficiently
emphasized in the past. We have illustrated this mechanism
with the example of a model of soft rods on a lattice in 1D
with short range interactions, which shows an infinite
number of phase transitions. One would expect similar
behavior to occur for objects of different shapes and even
in higher dimensions. These will be reported in a future
publication [23].
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