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Self-testing is a method with which a classical user can certify the state and measurements of quantum
systems in a device-independent way. In particular, self-testing of entangled states is of great importance in
quantum information processing. An understandable example is that the maximal violation of the Clauser-
Horne-Shimony-Holt inequality necessarily implies that the bipartite system shares a singlet. One essential
question in self-testing is that, when one observes a nonmaximum violation, how far is the tested state from
the target state (which maximally violates a certain Bell inequality)? The answer to this question describes
the robustness of the used self-testing criterion, which is highly important in a practical sense. Recently,
J. Kaniewski derived two analytic self-testing bounds for bipartite and tripartite systems. In this Letter, we
experimentally investigate these two bounds with high-quality two-qubit and three-qubit entanglement
sources. The results show that these bounds are valid for various entangled states that we prepared.
Thereby, a proof-of-concept demonstration of robust self-testing is achieved, which improves on the
previous results significantly.
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Device-independent (DI) science, which is inspired by
the requirements for secure quantum information process-
ing, has attracted intense interest over the past decade [1].
In a DI approach, the only way to study the system is to
perform local measurements and analyze the statistical
results. Under the only assumptions of no signaling and the
validity of quantum theory, it has been shown that it is
possible to characterize the quantum devices in quantum
key distribution [2,3], randomness generation [4], entan-
glement witness, and dimension witness [5] in a DI way.
Especially, in some cases, one can certify uniquely the state
and the measurements that are present in the devices,
simply by querying the devices with classical inputs and
observing the correlations in the classical outputs. This
phenomenon is known as the concept of “self-testing” [6].
An explicit example is the fact that the maximal violation of
the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality
[7,8] uniquely identifies the maximally entangled state of
two qubits [9], namely, “singlet.”
A general conclusion can be made that the violation of a

Bell inequality [10] reveals the presence of entanglement.
Concretely speaking, certain Bell correlations can be
reproduced only by performing specific local measure-
ments on a specific entangled state (up to local unitaries),
and thus, the observation of such correlations allows one to
characterize an unknown source of quantum states as well
as the measurement devices [11] or observables [12–15] in
a DI manner. Recently, criteria to self-test different forms of
entangled states, i.e., multipartite entangled states [16],

graph states [17], high-dimensional maximally entangled
states [18,19], nonmaximally entangled states of two qubits
[20,21], or arbitrary pure bipartite states [22,23] have also
been proposed. The results of these works are limited to
ideal scenarios in which the tested states are fully ideal.
However, in practical quantum information processes, the
state contained in the devices generally deviates from the
ideal case due to the presence of errors. As a result, we
cannot observe the maximal quantum violation in self-
testing procedures. However, in such a case, it is still
important to know how far the tested state is from ΨA0B0

(which maximally violates a certain Bell inequality), in
other words, how robust the used self-testing criterion is
considering realistic errors. Although self-testing state-
ments of practically relevant robustness are highly signifi-
cant, few theoretical results for them are known [12,24,25].
Self-testing has been used to estimate the quality of a large-
scale integrated entanglement source [26]. However, it is a
prerequisite to verify the practical reliability of a self-
testing criterion before employing it, which is just the main
result of this Letter.
Recently, Kaniewski had developed a new technique to

prove analytic self-testing statements [27]. The new method
can give rise to a family of operators to place a lower bound
on the spectrum of these operators, and thus, immediately
yields a self-testing robustness statement. The advantage of
the new method is that it provides an explicit construction
of the extraction channels in terms of the measurement
operators. Previous methods, on the other hand, resort to a
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numerical optimization over a wide class of extraction
maps and, hence, do not identify the optimal ones. This
distinct advantage makes the given bound feasible to be
experimentally implemented.
For singlet self-testing with the CHSH inequality, this

method can give a nearly optimal bound that improves
on all the previously known results; for the tripartite
Greenberger-Horne-Zeilinger (GHZ) state [28] self-testing
with Mermin inequality [29], this method yields the first
tight self-testing statement. In this Letter, we experimen-
tally investigate these two bounds with high quality two-
qubit and three-qubit entanglement sources, which can
generate pure and mixed quantum states with an adjus-
table degree of entanglement. Under the fair sampling
assumption, our Letter is one of the first proof-of-concept
demonstrations of self-testing. The results show that these
two bounds are valid for various entangled states prepared
in this Letter. Furthermore, by preparing several example
families of entangled states, we experimentally demonstrate
robust self-testing processes which improve the previous
known theories significantly, and thus, our Letter can be
more instructive for the application of self-testing to new
quantum techniques.
Theoretical framework.—We describe the self-testing

scenario in detail: Alice and Bob share some quantum
states in a blackbox-like device, and they want to identify
the state through some measurement apparatus (MA). If
these MAs can be trusted, they can perform tomography to
precisely deduce the form of the shared state. Otherwise,
their actions are limited to choosing the measurement
setting and observing the outcome, and hence, the only
information available to them is the conditional probability
distribution Pða; bjx; yÞ (i.e., the probability of observing
outputs a, b for inputs x, y).
The self-testing statement can be quantified by the

extractability ΞðρAB → ΨA0B0 Þ of the test state ρAB to a
target state ΨA0B0 , which can be defined as the maximum
fidelity taking over all quantum channels (completely
positive trace-preserving maps) of the correct input-output
dimension [27]. In order to test the entanglement character-
istics of ρAB, ΨA0B0 is assumed to be a state which achieves
the maximal quantum violation. Theoretically, when the
maximal quantum violation is observed in a self-testing
scenario, the shared unknown state can be mapped to ΨA0B0

with the extractability to be 1. In practical quantum
information processes, errors are unavoidable, and the
robustness can be described by the lowest possible extract-
abilityQΨ;BðβÞwhen one observes the violation of (at least)
β on the Bell inequality B [27].
By constructing the local extraction channels ΛA and ΛB

from the measurement parameters a and b [27], it can be
proved

Kða; bÞ ≥ 4þ 5
ffiffiffi
2

p

16
Wα;βða; bÞ −

1þ 2
ffiffiffi
2

p

4
: ð1Þ

The Bell operator W is defined by the parameters a and b
and written as Wða; bÞ ¼ P

j;k∈f0;1gð−1ÞjkAjðaÞ ⊗ BkðbÞ.
K is the fidelity operator constructed from a and b and
written as K ≔ (ΛAðaÞ ⊗ ΛBðbÞ)ðΨA0B0 Þ [27].
The lower (i.e., self-testing) and upper bounds can be

deduced from Eq. (1) as
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In a similar way, for the three-qubit scenario in which
each of the three parties has a binary measurement operator
and an extraction channel defined by a, b, c the operator
inequality can be written as

Kða; b; cÞ ≥ 2þ ffiffiffi
2

p

8
Wða; b; cÞ − 1ffiffiffi

2
p : ð3Þ

Surprisingly, using the Mermin inequality, a perfectly tight
self-testing bound can be obtained [27] as

QϒABC;BMermin
ðβÞ ¼ 1

2
þ 1

2

β − 2
ffiffiffi
2

p

4 − 2
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p ; ð4Þ

where β > 2
ffiffiffi
2

p
to guarantee a nontrivial fidelity statement.

In a black-box scenario, certain Bell violation β may
result from a strongly nonlocal state with a nonoptimal
measurement setting, or a relatively weaker nonlocal state
with an (nearly) optimal measurement setting. In this
situation, self-testing bound aims to give a lowest possible
extractability for an ensemble of states that achieve the
violation value of (at least) β. Therefore, self-testing is
essentially different from state tomography, which can
precisely reconstruct the density matrix of the measured
state. The more robust the self-testing bound is, the higher
merit of entanglement can be guaranteed when observing a
certain violation value. Previously, a violation exceeding
2.37 can only guarantee a nontrivial extractability (≥ 0.5)
to the singlet, whereas the new bound can raise the
extractability commitment ≥ 0.68. Meanwhile, the non-
trivial threshold decreases to β ¼ 2.11.
Experimental results.—The bounds from Ref. [27]

exhibit excellent robustness to noise, so they are perfectly
suited to be applied in an actual experiment. This is
precisely the motivation for the current Letter.
The above two analytic self-testing bounds in inequal-

ities (2) and (4) can be experimentally studied by the setup
in Fig. 1. The setup consists of two main parts. One part is
responsible for the generation of the polarization-entangled
photon pairs, and the other part is used to generate various
kinds of pure or mixed two-qubit and three-qubit states. In
the first part, polarization-entangled photons are generated
in the state cos θj00i þ sin θj11i (0 and 1 denote the
horizontally and vertically polarized components, respec-
tively) and θ is controlled by the pumping polarization [30].
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These photon pairs are then sent into the second part by
two single mode fibers, and the polarization is maintained
by two HWPs before and after each fiber. A process
tomography shows that the polarization maintaining fidel-
ity is 0.997� 0.0007 [31]. For singlet state self-testing, the
overall efficiency from creation to detection of entangled
photons is ≃0.11 for both sides.
For the generation of two-qubit states, Charlie does

nothing and can be neglected. Alice and Bob can perform
measurement operators K and W with random ða; bÞ, and
we would like to verify that inequality (2) cannot be
violated for all the tested scenarios. Wða; bÞ can be
decomposed into A0, A1, B0, B1 to be realized by a
QWP-HWP array, which is in the form of

AðBÞr ¼ cos aðbÞσx þ ð−1Þr sin aðbÞσz; ð5Þ
with r ∈ 0, 1.Kða; bÞ consists of mixtures of Pauli matrices
σi ⊗ σi (i ∈ 1, 2, 3, 4), and its expected value can be
directly measured and is hKða; bÞi.
The results for different singlets, partially entangled and

mixed bipartite states are shown in Figs. 2(a)–2(c). It is
clear for all the tested states and randomly chosen fa; bg,
the data points are all above the red line, exactly satisfying
the operator inequality (1). As a reasonable inference, the
self-testing bound represented by left side of the inequality
(2) is valid for all tested scenarios.
The self-testing bound can also be directly tested by

measuring the relation between the Bell violation β and the
extractability Ξ, and hence to reveal how tight the bound is
in a visual representation. Considering the fact that for a

certain violation β, the lowest possible extractability is
reached by the state of which the ultimate violation is just β,
we measure both the maximal violation and the extract-
ability of various of entangled states, as shown in Fig. 2(d).

FIG. 1. Experimental setup. A periodically poled KTiOPO4 (PPKTP) nonlinear crystal placed inside a phase-stable Sagnac
interferometer (SI) is pumped by a single mode 405.4 nm laser to produce polarization-entangled photon pairs at 810.8 nm. Bandpass
filters at 810 nm and long-pass filters are used to block the pump light. One photon will pass through a sufficiently unbalanced (to make
the two light paths fully decoherent) Mach-Zehnder interferometer (MZI) constructed by two 50=50 nonpolarizing beam splitters BS1
and BS2 when mixed states must be generated. By introducing replaceable modules on the long arm of this unbalanced MZI, different
categories of states can be prepared. The other photon will pass through a balanced MZI constructed by beam displacers BD1 and BD2
when we need to generate tripartite states. One polarization beam splitter (PBS), a motorized half-wave plate (mHWP), and a motorized
quarter-wave plate (mQWP) are used to perform the projection measurements on each qubit. BS, beam splitter; L, lense; Dia,
diaphragm, Di, dichroic; IF, interfering filter; LBD, longtitudinal beam displacer; PCP, phase compensation plate.

(a) (b)

(c) (d)

FIG. 2. Experimental test of operator inequality (1) with
(a) different singlet states obtained by rotating HWP3 to the
angles shown in the figure; (b) partially entangled states char-
acterized by the value of θ shown in the figure; (c) mixed states
obtained by inserting wave plates of different levels of retarda-
tion. With randomly sampled fa; bg, all data points are above
the given bound. (d) Experimental self-testing of four special
categories of entangled states, with the red and blue dashed lines
representing the lower (self-testing) and upper bounds in inequal-
ity (2), respectively.
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In particular, a category of registered two-qubit states
ρXYAB can approach the lower bound, providing evidence
that the robustness bound is nearly optimal [see
Supplemental Material [32] for details].
Replacing τ11AB in ρXYAB with a Werner state, another

category of registered entangled states ρXYAB0 are tested
with unaltered extraction strategy [see Supplemental
Material [32] for details]. Besides, these Werner states
have also been tested individually. The partially entangled
states are prepared by rotating HWP1 before the SI, and
thus, the generated two-qubit states are in the form of
cos θj00i þ sin θj11i. By varying θ, a category of partially
entangled states are tested. For these four categories of
states, the extractability Ξ are measured and all the data
points are above the self-testing bound (red line), which are
exactly consistent with inequality (2). Each category
consists of states with the violation above and below
2.11, and thus, nontrivial and trivial self-testing conclu-
sions can be made accordingly.
Considering all the above results, we experimentally

prove that the given robustness bound for the self-testing of
bipartite states is valid for all the states tested in this Letter.
Furthermore, we show that the given bound is nearly
optimal to implement a robust self-testing procedure by
identifying the states falling in the narrow band between
the upper and lower (i.e., self-testing) bounds. Although
the given CHSH self-testing bound is not tight, i.e., for
violations between 2.00 and 2.11, we currently cannot
certify entanglement, but in the future it is possible to
formulate a stronger self-testing statement. However,
according to the experiment results for ρXYAB, any improved
self-testing bound cannot surpass the current upper bound,
shown as the blue dashed line in Fig. 2(d).
By introducing Charlie, we can generate various tripartite

entangled states and measure the corresponding
hKða; b; cÞi and hWða; b; cÞi. In the experiment, the simu-
lated tripartite states are generated by introducing the spatial
mode of one photon, which is realized by BD1 and BD2 in
Fig. 1. All these data points are well above the lower bound
described by inequality (3), as shown in Fig. 3(a).
For tripartite self-testing, we prepare a category of states

which are mixtures of a GHZ state ϒABC and νABC, where
νABC ¼ j0iAjΦiBC with ΦBC to be equivalent to the singlet
state (up to local unitary). Concretely, for photons passing
the short arm of the unbalanced MZI, ϒABC is produced.
Although for photons passing the long arm with module 3,
they are firstly rotated to be diagonally polarized and only
the 0 component is then selected by PBS2 to produce νABC.
By changing the mixture weight, a series of mixed states are
generated with fidelity ≃0.99 and the measured results are
shown in Fig. 3(b). The data points almost fall on the lower
bound (red line) considering the error bars, indicating the
given bound for the tripartite scenario is provably tight for
performing a robust self-testing procedure.
Device-independent certifications require no-signaling

constraints on the devices [33], which can be tested through

the influence on the one side from the measurements of all
the other sides [10]. For example, for a tripartite state, the
measurement settings are x and y, z on Alice, Bob and
Charlie sides respectively, with the corresponding out-
comes to be a, b, c. As a result, the mean value of hAxi
can be calculated by summing all the possibilities on b and
c. The no-signaling constraint requires that hAxi remains
constant when (y, z) is changed to (y0, z0), which can be
written as

hAxi ¼
X1

b¼0

X1

c¼0

ðPða ¼ 1; b; cjx; y; zÞ

− Pða ¼ −1; b; cjx; y; zÞÞ; ð6Þ

¼
X1

b¼0

X1

c¼0

ðPða¼ 1; b; cjx;y0; z0Þ

−Pða¼ −1; b; cjx;y0; z0ÞÞ for allx;y; y0; z; z0: ð7Þ
Similar requirements need to be satisfied for all joint
measurement settings appearing in the CHSH and
Mermin Bell inequalities, and the results are shown in
Fig. 4. When the tested states are the maximally entangled

Three states
GHZ GHZ-U non-GHZ

2.8 3.0 3.2 3.4 3.6 3.8 4.0
0.2

0.4

0.6

0.8

1.0

<w(a,b,c)>

<k
(a

,b
,c

)>

general tripartite states(a) (b)

FIG. 3. Experimental test of the self-testing bound for tripartite
scenarios. (a) For several typical tripartite entangled states, themean
values of both the fidelity operatorK and theMermin operatorW are
measured,with randomsamplingon ða; b; cÞ.All the datapoints are
above the bound (red line) given by operator inequality (3). (b) For
mixtures of ϒABC and νABC with different weights, the maximum
violations of Mermin inequality and corresponding extractabilities
are measured. All the dots almost fall on the lower bound (red line),
indicating the given bound is tight.

FIG. 4. No-signaling tests for measuring the (a) CHSH inequal-
ity with singlet state and (b) Mermin inequality with the GHZ
state. The mean value of each operator is invariant within one
standard deviation, confirming the no-signaling characteristics of
the used devices.
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singlet and GHZ state, the mean values of an arbitrary
observable are approximately identical for different joint
measurement settings appearing in the inequalities, which
exactly satisfies the no-signaling constraint.
To implement a practical device-independent self-

testing, one has to achieve high efficiency in detecting
entangled particles so as to close the detection loophole
[34]. For CHSH Bell inequality, an overall efficiency
above 0.828 is required. Prospectively, this require-
ment can be met by improving the detector performance
and the coupling efficiency. Specifically, employing
superconducting nanowire single-photon detectors and
setting the beam waists properly with respect to that of
the pump beam, one can increase the overall effici-
ency significantly toward a detection loophole-free
self-testing.
Discussion.—Although the scientific community pur-

sues construction of perfect correlations with which one
can uniquely (up to local isometries) infer the appearance of
a certain ideal state, self-testing robustness statement is of
significant importance from a practical point of view.
Similar statements are mainly inspired by the fact that
the realistic states may deviate from the ideally entangled
states and cannot violate the utilized Bell inequality
maximally. In these cases, the robustness statements are
able to provide a quantitative description of the entangle-
ment characteristics for the tested states. As a specific
example, the concrete form of the shared states contained in
the entanglement sources may not be important, and rather,
only, a guarantee of the quality of the entanglement is
desired. In this scenario, simply by querying the devices
with classical inputs and observing the correlations in the
classical outputs, one can immediately obtain a minimum
fidelity to the ideal state according to the robustness bound.
The two (nearly) optimal analytic robustness bounds,
which are applicable for bipartite and tripartite systems,
are tested in the present experiment. The results clearly
confirm the validity of these two bounds; thereby, robust
self-testing processes are achieved in this experiment. Our
Letter is instructive for practical self-testing tasks, such as
placing a lower bound on the distillable entanglement of an
unknown state.
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