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In systems with competing interactions, continuous degeneracies can appear which are accidental, in that
they are not related to any symmetry of the Hamiltonian. Accordingly, the pseudo-Goldstone modes
associated with these degeneracies are also unprotected. Indeed, through a process known as “order-by-
quantum disorder,” quantum zero-point fluctuations can lift the degeneracy and induce a gap for these
modes. We show that this gap can be exactly computed at leading order in 1=S in spin-wave theory from the
mean curvature of the classical and quantum zero-point energies—without the need to consider any spin-
wave interactions. We confirm this equivalence through direct calculations of the spin-wave spectrum to
Oð1=S2Þ in a wide variety of theoretically and experimentally relevant quantum spin models. We prove this
equivalence through the use of an exact sum rule that provides the required mixing of different orders of
1=S. Finally, we discuss some implications for several leading order-by-quantum-disorder candidate
materials, clarifying the expected pseudo-Goldstone gap sizes in Er2Ti2O7 and Ca3Fe2Ge3O12.
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Goldstone’s theorem [1] connects the spontaneous
breaking of a continuous symmetry to the presence of
gapless excitations—a foundational result with applications
in almost every branch of physics. Alternatively, gapless
excitations can be generated by accidental degeneracies
which are not symmetry enforced [2]. Just as continuous
symmetries imply the presence of gapless Nambu-
Goldstone modes, accidental degeneracies imply the pres-
ence of pseudo-Goldstone modes that are nearly gapless
when (inevitably) these degeneracies are weakly lifted.
Such modes have been invoked to explain the appearance
of unexpectedly low-lying excitations many contexts,
ranging from quantum chromodynamics [3] to high-
temperature superconductors [4,5] and quantum magnets
[6–8]; perhaps the most well known example is the mass of
the pion, which arises due to broken chiral symmetry [9,10].
In lieu of explicit symmetry breaking, accidental degen-

eracies can also be lifted by fluctuations. Broadly referred to
as “order by disorder” [6–8], this phenomenon has proven
useful in understanding a wide variety of ordering phenom-
ena in frustrated spin systems [7,11–14], where accidental
degeneracies are natural. An example is “order-by-quantum
disorder” [7,8], where an accidentally degenerate manifold
in the classical limit, S → ∞, is lifted by quantum correc-
tions at Oð1=SÞ. Within noninteracting spin-wave theory
[15], these contributions can be viewed as the zero-point
energy of the harmonic spin-waves selecting some subset of
the classically degenerate manifold [7,8].
Through order-by-quantum disorder, the pseudo-

Goldstone modes associated with this accidental degen-
eracy must acquire a gap. Since in noninteracting
spin-wave theory these modes are gapless, to obtain a
finite gap one must include the effects of spin-wave

interactions. While conceptually simple, such calculations
have only been carried out for a few limited cases, mostly
for simple isotropic Heisenberg-like models [8,14,16–20].
In more complex models with strong exchange anisotropy,
such as in the rare-earth pyrochlores [21] or in Kitaev
magnets [22,23], these calculations can be complicated
by the presence of three-magnon interactions that can lead
to spontaneous magnon decay [24], even for colinear
magnetic ground states.
In this Letter, we offer a significant simplification,

showing that the curvatures of classical and quantum
zero-point energy densities computed at Oð1=SÞ, are
already sufficient to determine the pseudo-Goldstone gap
exactly to Oð1=S2Þ. Explicitly, if the classically degenerate
manifold is parametrized by ϕ with conjugate direction θ
(see Fig. 1), the pseudo-Goldstone gap, Δ, is given by [25]

FIG. 1. Schematic illustration of the semiclassical energy density
ϵðϕ; θÞ, and the curvatures ½ð∂2ϵ=∂θ2Þ�0 and ½ð∂2ϵ=∂ϕ2Þ�0 about
the semiclassical ground state, which are related to the pseudo-
Goldstone gap, Δ, via Eq. (1). The nearly soft manifold associated
with a type I pseudo-Goldstone mode is shown, with the two
principal curvatures about a global minimum indicated.
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where the semiclassical energy density, ϵðϕ; θÞ, of the
classical ground state at ðϕ; θÞ includes the classical
[OðS2Þ] and quantum zero-point [OðSÞ] contributions.
While used as a heuristic in several works [8,16,59–61],
its equivalence to the leading result from nonlinear spin-
wave theory is far from evident in perturbation theory, as it
involves mixing of different orders in 1=S. This formula
eliminates much of the burden of computing the pseudo-
Goldstone gap, requiring only quantities from standard
noninteracting spin-wave theory, a computation consider-
ably more straightforward to undertake in practice.
In light of this, we revisit a variety of models that

exhibit order-by-quantum disorder, including square and
cubic Heisenberg-compass models [16], Heisenberg-
Kitaev-Γ models [60,62] on the honeycomb lattice, and
J1 − J2 models on the square and triangular lattices
[7,13,14,63]. For each, we compute the gap both explicitly
in interacting spin-wave theory—often for the first time—
and then again using the curvature formula [Eq. (1)],
confirming that they are indeed identical.
Finally, we consider applications; while order-by-

quantum disorder has a long theoretical history [6–8,
16,64], there are only a handful of serious potential
experimental candidates [8,17,61,65–67]. Two of the best
material examples are the cubic Heisenberg antiferromag-
net Ca3Fe2Ge3O12 [8,65], and the pyrochlore XY anti-
ferromagnet Er2Ti2O7 [61,67,68], where the leading
energetic effects [69] are naïvely [70–72] expected to
be small [61]. In this context, the pseudo-Goldstone gap
provides a quantitative benchmark which may be used to
distinguish order-by-quantum disorder from more con-
ventional energetic selection. Given knowledge of the
models for these materials [61,65] and when the semi-
classical picture is a good description, our result provides
a straightforward way to estimate the pseudo-Goldstone
gap observed experimentally, cleanly demonstrating the
utility of these results.
Spin-wave theory.—We first review the physics of

pseudo-Goldstone modes as they appear in linear spin-
wave theory. As for the usual Goldstone modes, these can
be classified into two types [73,74], which we denote as I
and II, which correspond to having nonconserved and
conserved order parameters, respectively. For a type I
pseudo-Goldstone mode the linear spin-wave dispersion
vanishes linearly ∼jkj, while for the type II case it vanishes
quadratically ∼jkj2, as illustrated in Fig. 2.
More explicitly, we can define the linear spin-wave

Hamiltonian [15]

S
X
k

X
αβ

�
Aαβ
k a†kαakβ þ

1

2
ðBαβ

k a†kαa
†
−kβ þ H:c:Þ

�
; ð2Þ

where akα is the (Fourier-transformed) Holstein-Primakoff
boson with wave vector k on sublattice α of the (magnetic)
unit cell. The matrices Ak and Bk depend on the classical
ordering pattern and the exchange model; see Supplemental
Material [25] for details. The linear spin-wave spectrum
is determined by the eigenvalues of the Bogoliubov
dispersion matrix [75]

σ3Mk ≡
�

Ak Bk

−B†
k −A⊺

−k

�
; ð3Þ

where σ3 ≡ diagðþ1;−1Þ is a block Pauli matrix. A
pseudo-Goldstone mode appears as a zero in the linear
spin-wave spectrum. Without loss of generality, we assume
that this zero mode lies at the zone center, with M0

being positive semidefinite, and Mk positive definite
elsewhere (this is always possible for commensurate
magnetic orders).
When spin-wave interactions are included, the excitation

energies are indicated by the poles of the (retarded) magnon
Green’s function

GRðk;ωÞ≡ ½ðωþ i0þÞσ3 − SMk − ΣRðk;ωÞ�−1; ð4Þ

where ΣRðk;ωÞ is the (retarded) self-energy. We use a
formalism where the free magnon Green’s function is
defined as a matrix that includes both the sublattice indices
and the normal and anomalous contributions [75]. The
effects of spin-wave interactions encoded in the self-energy
can be computed perturbatively [76] in the limit 1=S → 0

[77,78]. The leading contributions at order OðS0Þ are
illustrated in Fig. 3.
The determination of the poles of the magnon Green’s

function then proceeds perturbatively in the self-energy,
with respect to Mk. For the type I case, one finds the
relevant low-energy subspace of σ3M0 is similar to a
defective Jordan block [75]. The pseudo-Goldstone gap,
Δ, at leading order is then

Δ ¼ S1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Re½V†

0ΣRð0; 0Þσ3M0V0�
q

þOðS−1=2Þ; ð5Þ

FIG. 2. Schematic form of the spectrum of (a) type I and
(b) type II pseudo-Goldstone modes. Type I modes have ω ∼ jkj
at OðSÞ, with the pseudo-Goldstone gap scaling as Δ ∼OðS1=2Þ,
while type II modes have ω ∼ jkj2 at OðSÞ, with Δ ∼OðS0Þ.
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where V0 characterizes part of the zero mode subspace
[25]. For the type II case, there are two linearly independent
eigenvectors of σ3M0 with eigenvalue zero, V0 and W0.
The pseudo-Goldstone gap is then

Δ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV†

0ΣRð0;0ÞV0Þ2− jV†
0ΣRð0;0ÞW0j2

q
þOðS−1Þ; ð6Þ

at leading order. Once the self-energy due to magnon-
magnon interactions is computed, these equations
[Eqs. (5) and (6)] allow the direct calculation of the
pseudo-Goldstone gap. A detailed derivation for both cases
is provided in the Supplemental Material [25].
These follow distinct scalings with the spin length

[see Eqs. (5) and (6)]: for a type I pseudo-Goldstone mode
the gap scales as Δ ∼OðS1=2Þ, while for a type II pseudo-
Goldstone mode it scales as Δ ∼OðS0Þ. Away from the
zone center [74], the spectrum takes the low-energy form
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2jkj2 þ Δ2

p
for type I modes, while for type II modes it

takes the form ∼v2jkj2 þ Δ, as shown schematically
in Fig. 2.
Curvature formula and semiclassical dynamics.—We

now motivate the curvature formula for the pseudo-
Goldstone gap, Δ [Eq. (1)], through a heuristic semi-
classical argument. It is useful to construct a local frame
ðx̂α; ŷα; ẑαÞ where ẑα is the ordering direction, x̂α is the
soft-mode direction, and ŷα ¼ ẑα × x̂α. If we parametrize
the soft mode by an angle ϕ, and the (locally) orthogonal
directions by an angle θ, we can define the classical spin
configuration

Sα ¼ Sðϕx̂α þ θŷα þ ẑα½1 − ðϕ2 þ θ2Þ�1=2Þ; ð7Þ

accurate to quadratic order in θ and ϕ. For simplicity, we
have assumed here that the soft mode is uniform, with the
relative weight of the rotations not varying between
sublattices—this assumption is not essential, and can be
lifted [25]. These variables have the Poisson bracket
fϕ; θg ¼ NS and thus essentially behave like a position
and its canonically conjugate momentum. For the type I
case, ϕ is classically soft, with no restoring force, while θ is
not, while for the type II case both are classically soft.

If we treat these collective coordinates as classical
dynamical variables, then quantum fluctuations can be
included in an ad hoc way by using the semiclassical spin-
wave energy density ϵðϕ; θÞ as an effective potential;
explicitly,

ϵðϕ; θÞ≡
�
S2ϵclðθÞ þ Sϵquðϕ; 0Þ; type I

Sϵquðϕ; θÞ; type II
; ð8Þ

where ϵcl is the classical energy density and ϵqu is the
quantum zero-point energy density [25] computed in linear
spin wave theory for the soft spin configurations [Eq. (7)].
Since the θ direction is not soft for type I pseudo-Goldstone
modes, the classical part of the energy must be included.
The quantum zero-point energy density is defined as
ϵquðϕ; θÞ≡ ð2NÞ−1Pkαϵkαðϕ; θÞ, where ϵkαðϕ; θÞ are the
spin-wave energies found expanding about a classical
ground state with finite ϕ; θ. For the type II case, this
zero-point energy is well defined for arbitrary ϕ and θ, with
the classical energy independent of both variables; while
for the type I case, the zero-point energy is ill defined for
θ ≠ 0, and thus we fix θ ¼ 0.
The curvatures of the total semiclassical energy density

directly determine the normal mode frequency of θ and ϕ
via the classical equations of motion [79]

dϕ
dt

¼ þ 1

S
∂ϵ
∂θ ≈ þ

� ∂2ϵ

∂θ∂ϕ
�

0

ϕþ
�∂2ϵ

∂θ2
�

0

θ; ð9aÞ

dθ
dt

¼ − 1

S
∂ϵ
∂ϕ ≈ −

�∂2ϵ

∂ϕ2

�
0

ϕ −
� ∂2ϵ

∂θ∂ϕ
�

0

θ; ð9bÞ

giving the pseudo-Goldstone gap shown in Eq. (1). For
all the cases of interest the cross term vanishes, so we
omit ½ð∂2ϵ=∂θ∂ϕÞ�0 in what follows. Multiple sets of
pseudo-Goldstone modes can be handled in a similar
fashion, reducing to multiple independent copies of either
the type I or type II structures described above (absent
fine-tuning).
We have computed the pseudo-Goldstone gap for a wide

variety of models [25] using both nonlinear spin-wave
theory [Eqs. (5) and (6)], and using the curvature formula
[Eq. (1)], which involves only linear spin-wave theory. The
results are presented in Table I, where one can see that the
two methods agree exactly for all models considered. This
includes two- and three-dimensional models, isotropic and
anisotropic models, models with and without magnon
decay, as well as realistic models for two experimental
order-by-quantum disorder candidates. Some details for
each model, as well as examples of how to define ϕ, θ, and
compute the curvatures are provided in the Supplemental
Material [25].
Proof of formula.—The equivalence between these

two approaches can be understood as follows. The essen-
tial ingredient is to notice that the Holstein-Primakoff

FIG. 3. The three classes of (Hugenholtz) diagrams contribut-
ing to the OðS0Þ magnon self-energy, ΣRðk;ωÞ. The (free)
propagators (dark line) include normal and anomalous parts,
and are connected to external legs (dull line). The first diagram
involves a single four-magnon interaction (filled rectangle), while
the second and third involve a pair of three-magnon interactions
(filled circle).
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expansion should not depend on the choice of initial
classical ground state about which one expands, so long
as it is sufficiently close to the true ground state of the
model. In other words, the expansion must “self-correct,”
with the expectation values of the magnons giving the
appropriate true ground state spin directions, order by order
in 1=S. For a model without any accidental degeneracies
this can be shown at OðSÞ [25]; the required cancellation
relates the magnon energy at zero wave vector to the
curvature of the classical energy density, as in the formula
of Smit and Beljers [79].
To understand the implication of this self-correction at

higher order, we must proceed more indirectly. Define the
rotated Hamiltonian Hðϕ; θÞ ¼ Uðϕ; θÞ†HUðϕ; θÞ, where
Uðϕ; θÞ produces the soft configurations of Eq. (7) from the
state defined by ẑα. The self-correction condition is then the
(trivial) fact that the ground state energy of Hðϕ; θÞ is
independent of ϕ and θ. If one considers the implications of
this statement on the derivatives of the ground state energy

of Hðϕ; θÞ, at second order one finds that this implies the
sum rule [25,84]

U†
μσ3

�Z
dωωAð0;ωÞ

�
σ3Uν¼

1

SN

�� ∂2H
∂λμ∂λν

�
0

	
; ð10Þ

where μ; ν ¼ Θ;Φ, λΦ ¼ ϕ and λΘ ¼ θ and we define
UΦ ≡ ðV0 −W0Þ=ði

ffiffiffi
2

p Þ,UΘ¼ðV0þW0Þ=
ffiffiffi
2

p
which span

the zero-mode subspace [25]. The magnon spectral func-
tion is defined as Aðk;ωÞ≡ ð2iÞ−1½GRðk;ωÞ − GAðk;ωÞ�,
where the GAðk;ωÞ≡ GRðk;ωÞ† is the advanced magnon
Green’s function.
Using this sum rule [Eq. (10)] one can show that, at

OðS0Þ, the left-hand side is directly related to the pseudo-
Goldstone gap, while the right-hand side is related to the
curvatures of the classical energy density and quantum
zero-point energy density at OðS2Þ and OðSÞ, respectively
[25]. This argument does not directly extend to higher

TABLE I. Calculations showing the equality of the pseudo-Goldstone gap, Δ, computed from nonlinear spin-wave theory [Eqs. (5)
and (6)] and then independently from the curvatures of the classical and quantum zero-point energies [Eq. (1)]. For each model, the
lattice, the exchange regime, the type of pseudo-Goldstone mode, and several choice of parameters are listed. When available, additional
theoretical or experimental estimates of the pseudo-Goldstone gap are shown.

Model or material Parameters Type Δ ½ð∂2ϵ=∂θ2Þ�0 ½ð∂2ϵ=∂ϕ2Þ�0 S−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð∂2ϵ=∂θ2Þ�0½ð∂2ϵ=∂ϕ2Þ�0

p
S ¼ 1

2
=Exp:

Heisenberg-
compass

jKj=jJj ≪ 1 I 0.52S
1
2jKj32=jJj12 2jKjS2 0.137K2S=jJj 0.52S

1
2jKj32=jJj12

(Square,
Ferromagnet)

K=jJj ¼ −0.5 I 0.17jJjS1
2 jJjS2 0.0286jJjS 0.17jJjS1

2

Heisenberg-
compass [16]

jKj=jJj ≪ 1 II 0.093K2=jJj 0.093K2S=jJj 0.093K2S=jJj 0.093K2=jJj
(Cubic,
Ferromagnet)

K=jJj ¼ þ0.5 II 0.030jJj 0.030jJjS 0.030jJjS 0.030jJj
K=jJj ¼ −0.5 II 0.024jJj 0.024jJjS 0.024jJjS 0.024jJj

Heisenberg-Kitaev
[60]

jKj ≪ jJj II 0.0897K2=jJj 0.0897K2S=jJj 0.0897K2S=jJj 0.0897K2=jJj
(Honeycomb,
Ferromagnet)

K=jJj ¼ −2.0 II 0.208jJj 0.208jJjS 0.208jJjS 0.208jJj
K=jJj ¼ −0.65 II 0.03jJj 0.0300jJjS 0.0300jJjS 0.0300jJj ∼0.05jJj [80]

Heisenberg-Kitaev
[60]

jKj ≪ J Iþ I 0.83jKjS1
2 2ð3J þ KÞS2 0.115K2S=J 0.83jKjS1

2

(Honeycomb, Néel) K=J ¼ þ2.0 Iþ I 1.66JS
1
2 10JS2 0.274JS 1.66JS

1
2

K=J ¼ −0.5 Iþ I 0.434JS
1
2 5JS2 0.038JS 0.434JS

1
2

Heisenberg-Γ [62] Γ ≪ jJj I 0.29Γ2=jJj S1
2 3ΓS2 0.028Γ3S=jJj2 0.29Γ2=jJjS1

2

(Honeycomb,
Ferromagnet)

Γ=jJj ¼ þ0.5 I 0.081jJjS1
2 1.5jJjS2 0.00437jJjS 0.081jJjS1

2

Γ=jJj ¼ þ1.0 I 0.355jJjS1
2 3jJjS2 0.042jJjS 0.355jJjS1

2

J1 − J2 [7,11,13] J1=J2 ≪ 1 Iþ I 1.44J1S
1
2 4ð2J2 − J1ÞS2 0.2604J21S=J2 1.44J1S

1
2

(Square, stripe) J1=J2 ¼ 0.5 Iþ I 0.63J2S
1
2 6J2S2 0.0668J2S 0.63J2S

1
2 0.61J2S

1
2 [81]

J1=J2 ¼ 1 Iþ I 1.08J2S
1
2 4J2S2 0.294J2S 1.08J2S

1
2 0.96J2S

1
2 [81]

J1 − J2 [13,14] J2=J1 ¼ 0.25 IIþ II 0.53J1 0.53J1S 0.53J1S 0.53J1
(Triangular, stripe) J2=J1 ¼ 0.5 IIþ II 0.45J1 0.45J1S 0.45J1S 0.45J1

J2=J1 ¼ 0.75 IIþ II 0.58J1 0.58J1S 0.58J1S 0.58J1

Er2Ti2O7
[61,67,68]

Savary et al.
[61]

I 31.1 μeV 157.5 μeV 1.536 μeV 31.1 μeV 43 − 53 μeV
[82,83]

Ca3Fe2Ge3O12
[8,65]

Brueckel et al.
[65]

Iþ I 262 μeV 4 meV 107.5 μeV 262 μeV 136 μeV [65]
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orders in 1=S or to computing the energies of finite
energy modes to OðS0Þ. We note that in broad strokes
this argument bears some resemblance to the Witten-
Veneziano formula [85,86] for the mass of the η0 meson.
In addition, the sum rule [Eq. (10)] is related to Dashen’s
formula [87] for the mass of pseudo-Goldstone bosons,
such as the pion, when chiral symmetry is broken [25].
Discussion.—We now discuss some applications to two

leading experimental candidates for order-by-quantum dis-
order. The first of these is the compound Ca3Fe2Ge3O12,
which is a three-dimensional S ¼ 5=2 version of one of
the canonical order-by-disorder models, the J1 − J2 model
[7,13]. This system has a pair of type I pseudo-Goldstone
modes, as well as two true Goldstone modes. Because of the
low symmetry of the lattice, there are several independent
(isotropic) couplings, which have been estimated by com-
parison of the predictions of linear spin-wave theory with the
inelastic neutron scattering spectrum at zero field [65]. One
finds that the gap predicted by nonlinear spin-wave theory,
∼262 μeV, is of the right order of magnitude, but larger
than the 136 μeV [65] observed experimentally [88]. This
demonstrates sharply the utility of this method, with the
straightforward curvature calculation lending credence to
our more involved nonlinear spin-wave result. We also
note that the large size of the predicted gap supports the
picture that Ca3Fe2Ge3O12 is truly an example of order-
by-quantum disorder, and perhaps energetic corrections,
such as biquadratic interactions [61], are small. This
quantitative disagreement could be due to several factors,
such as the need to include additional anisotropic or
biquadratic exchanges in the model or the need to include
interaction or thermal effects in fitting the exchange
parameters, which were done at zero magnetic field and
moderate temperature [25].
Finally we turn to Er2Ti2O7, one of the more ideal

material platforms for finding order-by-quantum disorder
[61,67]. This is a three-dimensional S ¼ 1=2 XY antifer-
romagnet with a single type I pseudo-Goldstone mode.
Using the exchange parameters of Ref. [61], we find that
the gap, computed directly in nonlinear spin-wave theory as
well as via the curvature formula is ∼31 μeV [89]. This
theoretical value is still somewhat lower than the 43 μeV
[72,82] and 53 μeV [83] that have been reported exper-
imentally in Er2Ti2O7. This disagreement could be the
result of several factors, such as spin-wave theory being
nonquantitative [90] at S ¼ 1=2, uncertainties in the
exchange parameters [61], or the presence of energetic
corrections [70,71] in addition to the order-by-quantum-
disorder contribution.
There are many other experimental systems where order-

by-quantum disorder may be lurking, and where the results
presented here would be useful. In the same vein as
Er2Ti2O7, order-by-quantum disorder may play a role in
the pyrochlores Yb2Ti2O7 and its cousin Yb2Ge2O7 [91,92],
and perhaps even in the ytterbium based spinels [93–96].

Order by disorder has also has played a key role in the
understanding of models [60,97,98] of Kitaev materials [23]
such as Na2IrO3, α-RuCl3 and ðα; β; γÞ-Li2IrO3, and also in
related strongly spin-orbit coupled compounds [19,99,100].
On the more theoretical front, one could ask whether

the methods discussed could also resolve larger degener-
acies, e.g., subextensive line or surface degeneracies [18,
101–103]. More drastically, one could consider a case like
the kagome antiferromagnet, where the classical ground
state is macroscopically degenerate [104–106]. If one
expands about states that are expected to be selected by
1=S corrections, one finds that the linear spectrum has a
large number of zero modes [107]. It would be interesting
to compare the semiclassical approach outlined here to the
approaches followed in Ref. [108].
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