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Based on extensive numerical simulations, accounting for electrostatic interactions and dissipative
electron-phonon scattering, we propose experimentally realizable geometries capable of sustaining electronic
preturbulence in graphene samples. In particular, preturbulence is predicted to occur at experimentally
attainable values of the Reynolds number between 10 and 50, over a broad spectrum of frequencies between
10 and 100 GHz.
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Introduction.—Hydrodynamic theory [1,2] has proven
very successful in describing a large variety of physical
systems, across a broad range of scales, temperature, and
density regimes. The ultimate reason of this success is
“universality,” namely, the insensitivity of the hydrody-
namic description to the details of the underlying micro-
scopic physics, as long as such details do not spoil the basic
mass, momentum, and energy conservation laws, which
underpin the emergence of hydrodynamic behavior.
Under such conditions, at “sufficiently large” scales

(“large” meaning much larger than the typical microscopic
interaction length), the specific details of the interactions
among the constituent particles do not affect the structure
of the hydrodynamic equations but only the actual values of
the transport coefficients controlling dissipative effects,
such as the shear and bulk viscosity, as well as the thermal
conductivity.
Even if electrons roaming in a crystal can lose energy

and momentum towards impurities and the lattice, transport
in systems where the mean free path for electron-electron
collisions is the shortest length scale of the problem can
also be described by hydrodynamic theory and the Navier-
Stokes equations [3–34]. Interestingly, phonon transport is
also expected to display hydrodynamic features [35,36].
Recent experiments carried out in high-quality encapsu-

lated graphene sheets [37–40] and GaAs quantum wells [41]
have demonstrated unique qualitative features of hydro-
dynamic electron transport, namely, a negative quasilocal
resistance [37,39–41] and superballistic electron flow [38],
providing, for the first time, the ability to directly measure
the dissipative shear viscosity η of a two-dimensional (2D)
electron system. A different experiment [42] has shown
that, near charge neutrality, electron-electron interactions in

graphene are strong enough to yield substantial violations
of the Wiedemann-Franz law. Evidence of hydrodynamic
transport has also been reported in quasi-2D channels of
palladium cobaltate [43]. For a recent review, see Ref. [44].
Given this context, it is natural to investigate conditions

under which nonlinear terms of the Navier-Stokes equa-
tions, which have proven unnecessary so far to explain
experimental results [37–43], may become relevant.
In this Letter, we identify a range of geometrical and

physical parameters, in which electronic preturbulence can
be triggered and sustained in experimentally realizable
graphene samples, provided a substantial reduction of
electron-phonon scattering is achieved in future experi-
ments. In this context, preturbulence refers to a regime prior
to the onset of chaos, where periodic oscillations of the
velocity field can be observed, without necessarily exhib-
iting chaotic behavior [45]. To this purpose, we performed
extensive numerical simulations taking into account
electrostatic interactions and electron-phonon scattering.
In particular, we propose suitable geometries for which
preturbulence (i) occurs at experimentally achievable val-
ues of the Reynolds number and (ii) exhibits temporal
fluctuations of the electrical potential over a spectrum of
frequencies between 10 and 100 GHz.
Kinetic description and Boltzmann equation.—The

direct solution of the Navier-Stokes equations presents a
numerically challenging task. In the past decades, it has
become apparent that a broad class of complex flows can
be addressed by solving suitably simplified lattice versions
of Boltzmann’s kinetic equation [46] (for details, see
Supplemental Material [47]).
For the specific 2D electron system of interest in this

work, Boltzmann’s kinetic equation reads as follows:
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where fðr; p; tÞ is the one-particle distribution function
expressing the average number of particles in a small
element of phase space centered at position r with momen-
tum p at time t. In the above,m is a suitable effective mass,F
is the sum of all external forces acting on the system, and Ω
is the collision operator, commonly replaced by a relaxation
term towards local equilibrium [61].
It is well known that hydrodynamics emerges from

Eq. (1) in the limit of small Knudsen numbers [62], leading
to the continuity, Navier-Stokes, and energy-conservation
equations. Microscopic details are reflected by the transport
coefficients.
The bulk viscosity ζ is negligibly small for electrons in

graphene [22], and, while the lattice Boltzmann equation
usually features a nonzero value, it has no effect on the
physics discussed here, since the flow is nearly incom-
pressible. The shear viscosity η, on the other hand, plays a
crucial role [37–40], and, consequently, it is taken in full
account.
For the specific case of 2D electrons in doped graphene,

the total force is taken in the following form:

F ¼ e∇φðr; tÞ − nðr; tÞvðr; tÞ
τD

: ð2Þ

The first term on the right-hand side describes electrical
forces acting on a fluid element, −e being the elementary
charge and φðr; tÞ the electrical potential in the 2D plane
where electrons move. The second term describes forces
that dissipate electron momentum, i.e., due to collisions
between electrons and external agents, such as acoustic
phonons in graphene. These are parametrized as an external
friction, with a single timescale, i.e., the Drude-like
scattering time τD. This simple parametrization has proven
extremely successful in describing experiments in the
linear-response regime [37–41].
Following Ref. [16], we utilize the local capacitance

approximation in which the electrical potential is approxi-
mated as φðr; tÞ ≈ −eδnðr; tÞ=Cg, where Cg is the geomet-
rical capacitance of the graphene device of interest and
δnðr; tÞ ¼ nðr; tÞ − n̄, n̄ being the uniform value of the
electron density set by a nearby metallic gate. Using a similar
local approximation for the gradient of the pressure [63], i.e.,
∇P ≈ ð∂P=∂nÞnðr;tÞ→n̄∇δnðr; tÞ, we can define the electro-
chemical potential as Φðr; tÞ≡ −eδnðr; tÞðC−1

g þ C−1
Q Þ,

CQ ¼ 2n̄e2=EF being the so-called quantum capacitance
[63] and EF ¼ ℏvF

ffiffiffiffiffiffi
πn̄

p
the Fermi energy in single-layer

graphene (SLG). Finally, vF ≃ 106 m=s is the Fermi velocity
of massless Dirac fermions in SLG. With reference to
Eq. (1), we use the usual effective mass m ¼ EF=v2F
for SLG.

Our numerical results are based on extensive numerical
simulations of the geometry shown in Fig. 1(a), which can
be easily realized experimentally with current technology,
and for a large set of values of the relevant physical
parameters (see Table I). All cases considered in this work
fall in a regime of very small Mach number Ma, in which
compressibility effects can safely be neglected. The Mach
number is defined as the ratio between the plasma-wave
velocity vPW and the fluid velocity of the electron fluid,
with vPW ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2n̄v2F=ðCEFÞ

p
, where C−1 ¼ C−1

g þ C−1
Q .

For the device geometry shown in Fig. 1(a) and the
parameters used in all our simulations, Ma ≪ 1. [This
has been explicitly verified a posteriori for all cases.
For example, for the simulations corresponding to
Figs. 1(b)–1(d), we have Ma ≈ 0.0015, 0.08, and, 0.12,
respectively.] A small value of Ma in turn implies the quasi-
incompressibility of the electron fluid. As mentioned earlier
on, in this regime we have resorted to a lattice Boltzmann
(LB) approach [64], which, among others, offers the
advantage of a comparatively simple handling of non-
idealized geometrical boundary conditions. In this work,
we use a nonrelativistic LB scheme, since relativistic
approaches [65–67] are appropriate only very close to
the charge neutrality point, where charge and energy flows

FIG. 1. Preturbulence in high-quality graphene. (a) Geometrical
details of the setup analyzed in this work. Two graphene leads of
width W ¼ 1 μm are attached via “funnels” to a central area.
Current is injected through an orifice of width w ¼ 0.32 μm with
an obstacle of length D ¼ 0.3 μm placed at a lateral distance
d ¼ 0.1 μm from the orifice. (b)–(d) Snapshots of simulations for
several values of the injected current. (b) Velocity field vðr; tÞ
(top) and electrochemical potential Φðr; tÞ (bottom) for an
injected current I ¼ 10−6 A. (c) The same as in (b) but for
an injected current I ¼ 5 × 10−4A. (d) The same as in (b) and
(c) but for I ¼ 10−3 A. Data in (b)–(d) have been obtained
by setting ν ¼ 4 × 10−4 m2=s, τD ¼ 50 ps, and Cg=e2 ¼ 1.52 ×
1035 J−1 m−2 (see the text for definitions of all quantities).
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are coupled [44]. Technical details on this numerical
approach are reported in Ref. [47].
Numerical results.—We consider a geometry close to

the one used in recent experimental work [38], which
made use of a constriction to emphasize a clear crossover
from the ballistic Sharvin regime to the hydrodynamic
regime as a function of the temperature. Such a geometry
is sketched in Fig. 1(a), with the addition of a thin linear
obstacle, placed in front of the constriction, with the
intent of triggering preturbulent regimes at low Reynolds
numbers.
Figure 1 qualitatively summarizes our finding. For

appropriate values of the transport parameters [low enough
kinematic viscosity ν ¼ η=ðnmÞ and large enough τD], a
laminar behavior is found for low values of the current
[10−3 mA, Fig. 1(b)] injected in the sample. As the value
of the injected current is increased [0.5–1.0 mA, Figs. 1(c)
and 1(d), and, correspondingly, the typical fluid element
velocity increases], the onset of a preturbulent regime
takes place (identified with a procedure described later
in the text).
Present-day experiments cannot map the fluid velocity

everywhere in the sample but typically can only measure
the electrochemical potential (also mapped in Fig. 1) at
selected sites on the boundaries. The expected result of
such measurements is shown in Fig. 2(a), displaying the
electrochemical potential difference between locations
corresponding to the black square and triangle in
Fig. 1(a); here again, we appreciate a clear change from
a constant to a periodic, to a more irregular trend, which
is best analyzed in the frequency domain; see Fig. 2(b).
The present simulations cover a wide region in the
ν − τD plane. Results are collected in Fig. 3, showing
the smallest value of τD as a function of ν, for which a
crossover to an observable preturbulent regime occurs,
denoted by the symbol τ�D. Here and throughout, we shall
refer to “crossover” as a generic term, since investigating
the possibility of critical behavior is beyond the scope of
the present work.
Points in Fig. 3 refer to experimentally achievable values

of the injected current of the order of ≈1 mA. They have

been determined using the onset of a transverse current
along the middle section of the device as a discriminating
factor; the upper end of these points are simulations for
which the root mean square of the transverse current
exceeds 1% of the magnitude of the injected current (more
details in Supplemental Material [47]).
Recent works [37,38] have reported direct experimental

measurements of the kinematic viscosity ν of the 2D
electron system in graphene, which are on the order of
ν≲ 0.1 m2=s. As far as electron-phonon interactions are
concerned, state-of-the-art experiments in graphene encap-
sulated between hexagonal boron nitride (hBN) crystals
display τD ranging between 1 and 2 ps in the temperature
range 70–300 K, where hydrodynamic behavior is strong-
est. Inspection of Fig. 3 may therefore convey disap-
pointing news: For values of the parameters currently
achieved in experiments, no preturbulent behavior can
be detected. The mitigating observation is that substantial,
but not inconceivable, improvements of the transport

TABLE I. Typical values of physical parameters of state-of-the-
art experiments compared with those used in our simulations.
Refer to Fig. 1(a) for the definition of L and W. All other
parameters are defined in the main text.

Typical experiments This work

L 5–30 ½μm� 10 ½μm�
W 1–5 ½μm� 1 ½μm�
n̄ 0.5–4 × 1012 ½cm−2� 2 × 1012 ½cm−2�
I 10−3 − 1 ½mA� 10−3 − 1 ½mA�
ν 0.01–0.1 ½m2=s� 10−4–10−3 ½m2=s�
τD 1–5 [ps] 1–400 [ps]
Cg=e2 3.03 × 1034 ½J−1 m−2� 3.03 × 1035 ½J−1 m−2�

FIG. 2. (a) Time evolution of the electrochemical potential
difference ΔΦ ¼ Φðr̄; tÞ −Φðr̄0; tÞ, with r̄ ¼ ð3 μm; 0.1 μmÞ
and r̄0 ¼ ð3 μm; 0.9 μmÞ. These two points have been marked
in Fig. 1(a) by a triangle (r̄) and a square (r̄0). Numerical results
shown is this figure have been taken from simulations using
ν ¼ 4 × 10−4 m2=s, τD ¼ 50 ps, Cg=e2 ¼ 1.52 × 1035 J−1 m−2,
and the following values of the injected current: I ¼ 10−6A
(red), I ¼ 5 × 10−4A (green), and I ¼ 10−3A (blue). (b) Power
spectrum of the signals shown in (a). The gray vertical lines
represent the first ten harmonics of the dominant frequency of
the periodic signal obtained from the simulation at injected
current I ¼ 5 × 10−4A.
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parameters may eventually turn the picture for good. For
example, the viscosity of the electron liquid at elevated
injection currents, as those needed to achieve the pretur-
bulent regime, is expected to be much smaller than that in
the linear-response regime, due to Joule heating [68], which
notably increases the electron temperature above the lattice
temperature. Moreover, recent material science advances
[69] have enabled much larger values of τD than those
measured in hBN-encapsulated graphene. Such large val-
ues of τD can be obtained by using different encapsulating
materials, such as WSe2, which are currently believed to
quench scattering of electrons against acoustic phonons in
graphene [69].
A further encouraging result is that the frequency

distribution of the electrochemical potential falls within
a measurable regime, if only with suitably designed
experiments.
From a purely fluid-dynamics point of view, it may be

interesting to characterize the crossover line clearly
shown in Fig. 3 in terms of an appropriate figure of merit.
To this purpose, we develop a simplified model, whose
starting point is the role played by the Reynolds number
as an indicator of turbulence. In the present case, the
turbulence-suppressing effect of the dissipative term in the
Navier-Stokes equation is augmented by electron-phonon
scattering.On purely dimensional grounds, it proves expedi-
ent to introduce a modified Reynolds number Re0, incor-
porating the effect of electron-phonon dissipation, namely,

Re0 ¼ jvjl
νþ l2

τD

; ð3Þ

with jvj a typical fluid-element velocity and l a typical
length scale for the system at hand.
This very simple model proves adequate to characterize

the actual behavior of the system. Lines in Fig. 3 are level
lines for Re0, which capture the trend of the different data
sets. In Eq. (3), we use the inlet velocity and obtain
l ¼ 0.135 μm through a linear fit. Such a value turns
out to be pretty close to the typical geometrical features of
the simulated layout.
We obtain the following estimates for the values of the

modified Reynolds numbers at the crossover: Re0 ∼ 19 for
I ¼ 10−4A, Re0 ∼ 33 for I ¼ 5 × 10−4 A, and Re0 ∼ 47

for I ¼ 10−3 A.
We do not wish to attach any deep meaning to this

parametrization but simply note that it discloses a simple
theoretical interpretation of the numerical results.
The Strouhal number St ¼ fl=jvj, where f is the

shedding frequency, might also be considered in order
to identify the crossover line. This is suggested by a
preliminary analysis showing that at fixed Re0 the value
of St is remarkably stable as we vary ν and τD along each
crossover line. For instance, at Re0 ¼ 47 we have
St ¼ 0.028� 0.001, which is comparable with previous
findings [13]. The corresponding frequencies f increase
monotonically with Re0 and are in the range 20–80 GHz.
We plan to further analyze the role of St in future works.
Closing remarks.—In summary, based on extensive

numerical simulations, accounting for electrostatic and
dissipative effects due to electron-phonon scattering in
experimentally realistic geometries, we have identified
parameter regimes under which electronic preturbulence
may eventually be detected by future experiments. To this
purpose, such experiments should operate at lower levels of
electron-phonon scattering (i.e., τD ∼ 20–50 ps) than those
that can be achieved in hBN-encapsulated graphene, which
is possible by using different encapsulating materials [69].
As a typical signature of electronic preturbulence, we
predict electrical potential fluctuations in the frequency
range between 10 and 100 GHz, which should be detect-
able by suitably designed experiments.
We emphasize that the placement of a thin plate across

the mainstream electron flow in a constricted channel
proves instrumental in lowering the Reynolds number at
which preturbulence occurs. Further optimization may
result from a concerted effort between future numerical
and experimental investigations.
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Ref. [47] for details on how these intervals are established),
with the following values of the injected current: I ¼ 10−4 A
(black), I ¼ 5 × 10−4 A (red), and I ¼ 10−3 A (green). Lines
represent iso-Reynolds curves, where Re0 as in Eq. (3) is used in
the definition of a Reynolds number that includes extrinsic
dissipation due to τD and l is a fitting parameter. Lines
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