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We identify trigonometric parity as the key ingredient behind models of neutral naturalness for the Higgs
potential and show how to construct the minimal model realizing trigonometric parity. We show that any
symmetric coset space readily includes such a trigonometric parity, which is simply a combination of
a π=2 rotation along a broken direction and a Higgs parity transformation. The top sector can be extended
such that this Z2 remains intact, which ensures the cancelation of the quadratic divergences in the Higgs
potential, yielding the simplest model of neutral naturalness.
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The possibility that the Higgs boson is not an elementary
particle but a composite [1–7] remains one of the most
fascinating explanations for the lightness of the Higgs
boson. This can happen in models where the Higgs boson
(in addition to being composite) was also a pseudo-Nambu-
Goldstone boson (PNGB) of a global symmetry sponta-
neously broken at energy scale f, described by the coset
G=H. The lightness of the Higgs boson also has a profound
impact on the expected spectrum of beyond the standard
model (BSM) particles. Natural models of EWSB will
predict the existence of light top partners that cancel the
bulk of the corrections to the Higgs potential. These can
either be scalar top partners as in supersymmetric models,
or fermionic top partners in composite Higgs models
[7–12]. The fermionic top partners in turn will produce
the “smoking gun” signals used for the LHC searches for
colored top partners [13–17]. However, with the accumu-
lated integrated luminosity already surpassing 60 fb−1,
our current bound on colored top partners is pushed up
to 1–1.5 TeV. The ever increasing top partner bounds may
make one wonder whether there are options where the nice
features of composite Higgs models are maintained without
the existence of colored top partners.
Twin Higgs (TH) models present another interesting

direction for stabilizing the Higgs potential [18–22]. In this
scenario an additional Z2 discrete symmetry is responsible

for the cancellation of the quadratic divergences. In TH
models the Higgs boson is also identified as a PNGB, and
the Z2 symmetry manifests itself via the sh ↔ ch exchange
symmetry in the Higgs potential [18,21,23–25]. This Z2

is very efficient at softening the Higgs potential and
eliminating most of the sources for tuning: in addition to
canceling the quadratic divergences, it also eliminates the
so called double tuning leading to Higgs potentials with
minimal tuning. Furthermore this Z2 relates the top to the
twin top, which is SUð3Þc color neutral, thus also evading
the bounds from direct top partner searches [26–28]. While
the TH framework is very attractive, the concrete models are
not: the minimal SO(8)/SO(7) coset space is very large,
leading to complicated models with very large representa-
tions. In these models the origin of the Z2 exchange
symmetry is not immediately obvious either.
In this Letter, we point out that the origin of the Z2

symmetry responsible for the cancelation of quadratic
divergences in composite Higgs models with color neutral
top partners can be traced back to a simple and very generic
discrete symmetry of the internal manifold describing the
coset space. We argue that for any symmetric coset space
the sh ↔ ch exchange symmetry (which appears e.g., in
twin Higgs models [29]) naturally emerges as a combina-
tion of Higgs parity with a π=2 rotation in the broken
direction corresponding to the physical Higgs boson. We
will show how to extend this “trigonometric Z2 symmetry”
such that it remains intact after the introduction of the top
Yukawa couplings, which will provide a natural origin for
the appearance of the color neutral top partners. The
trigonometric Z2 symmetry will relate the top and color
neutral top partners to each other. For the gauge sector we
will not assume a twinmechanism: indeed, in all THmodels,
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the Z2 twin parity is softly broken. We find the minimal
model with custodial symmetry based the SO(6)/SO(5) coset
[31,32], or, equivalently, the SU(4)/Sp(4) [33–36] coset,
which has a simple UV completion from fermion condensa-
tion. If our procedure was applied to the SU(3)/SU(2) coset
instead, wewould obtain a model similar to Ref. [20], which
was based on an extra dimensional construction. Finally,
we also present some striking collider signatures, including
six top final states.
First we present our essential new observation: a Z2

symmetry useful for building TH-type models is readily
present for every Goldstone boson as long as a Higgs parity
V is maintained by the coset space. Such a Higgs parity
automatically emerges for so-called symmetric coset spaces
(which include most of the commonly used examples). The
reason for the appearance of such a Z2 symmetry is quite
simple: whenever we have a broken symmetry, there is a
shift symmetry on the corresponding pion πi of the form
πi=f → πi=f þ ϵi. The effect of the Higgs parity is to
simply reverse the sign of the pion πi → −πi. Thus
combining a π=2 rotation in the broken direction with
Higgs parity will have the effect

πi

f
→ −

πi

f
þ π

2
; ð1Þ

which, on the trigonometric functions, is equivalent to

sin
πi

f
↔ cos

πi

f
: ð2Þ

We call this the trigonometric Z2 symmetry which is exactly
the type of exchange symmetry one needs for the THmodels
[18] to cancel the quadratic divergences and also further
reduce the tuning of the Higgs potential. It is automati-
cally contained in every symmetric coset space, e.g.,
SOðN þMÞ=SOðNÞ × SOðMÞ and SUðNþMÞ=SUðNÞ×
SUðMÞ×Uð1Þ. Whether this symmetry will actually be
realized on the Higgs potential will then depend on the
structure of the explicit breaking terms. The task is to design
the explicit breaking terms such that they break the general
shift symmetry (in order to allow the generation of a Higgs
potential) but maintain the Z2 discrete subgroup of the shift
symmetry identified above. Once this is achieved the
generated Higgs potential will be automatically exchange
symmetric.
As a simple and realistic illustration we present the top

sector of the SO(6)/SO(5) coset space [37]. Another
illustration based on the SU(3)/SU(2) coset leading to
the model of Ref. [20] is provided in the Supplemental
Material [39]. We will discuss the details of the gauge
sector of the model later, for now all we need is that the
SO(4) containing the SUð2ÞL electroweak gauge group and
SUð2ÞR custodial symmetry of the SM are embedded in the
first four components of the SO(6) and the vacuum
expectation value breaking the global symmetry is chosen

as V ¼ ð0; 0; 0; 0; 0; 1ÞT . In this case, the PNGB matrix U
corresponding to the physical Higgs boson will be given by

U ¼

0
BBB@

13
ch sh

1

−sh ch

1
CCCA; ð3Þ

where sh ¼ sinðh=fÞ and ch ¼ cosðh=fÞ. We can clearly
see that the fourth and sixth rows and columns correspond
to an SOð2Þ rotation by angle h=f. As discussed above, the
shift symmetry for the Higgs is exactly this (broken) SO(2)
rotation. The explicit expression for the Z2 trigonometric
parity acting on the Higgs matrix [obtained by the combi-
nation of the SO(2) rotation by angle π=2 with the Higgs
parity transformation V ¼ diagð1; 1; 1; 1; 1;−1Þ] is

Ph
1 ¼ Pπ=2V ¼

2
6664
13

−1
1

−1

3
7775; ð4Þ

where Pπ=2 is the SO(2) rotation by angle π=2 in the Higgs
direction. The field U transforms as U → Ph

1UV†.
Let us now consider the Yukawa couplings of the

fermions. We embed the third generation SM quark doublet
QL in the fundamental representation of SO(6) while the
right-handed top tR is assumed to be an SO(6) singlet.
The explicit expression for QL using the standard embed-
ding is ΨQL

¼ ðbL;−ibL; tL; itL; 0; 0ÞT=
ffiffiffi
2

p
.

The top Yukawa coupling will be of the form

ytΨ̄QL
ΣtR þ H:c:; ð5Þ

where Σ ¼ UV is the linearly realized Sigma field and
transforms as Σ → gΣ for any g ∈ SOð6Þ. Since the Higgs
is composite there will be additional form factors showing
up in Eq. (5) that however play no role in the following
argument, thus for simplicity we will suppress them for
now. To extend the Z2 trigonometric parity to the Yukawa
couplings we must introduce the twin tops t̃L;R and an
appropriate extension of the Z2 parity involving the
exchange of the ordinary and the twin tops. Due to the
form of the embedding of QL into ΨQL

we can see that
the twin top also needs to be embedded into multiple
components of the SO(6) vector. This is the underlying
reason why SO(6) is the smallest global symmetry where
the trigonometric Z2 can be implemented. Since the action
of the parity on the Higgs field involves exchanging the
fourth and sixth components, we embed the left handed
twin top into the sixth component of an SO(6) vector.
However, the embedding of the ordinary top contains tL
twice, so we expect that the proper embedding of the twin
top into an SO(6) vector will also contain t̃ twice. Thus we
conclude that, in order to realize the exchange symmetry
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between t and t̃ (which contains the Ph
1 operation), the

embedding for t̃L must be

Ψt̃L ¼ ð0; 0; 0; 0; t̃L; it̃LÞT=
ffiffiffi
2

p
; ð6Þ

while t̃R is also a singlet under SO(6). We note that since
we do not assume the existence of a twin SUð2ÞL gauge
symmetry, t̃L and b̃L do not have to be in the same
multiplet. We can now extend the Yukawa sector to include
the twin top Yukawa coupling as well:

ytΨ̄QL
ΣtR þ ỹtΨ̄t̃LΣt̃R þ H:c:: ð7Þ

If yt ¼ ỹt this Lagrangian will be invariant under the
trigonometric parity

ΨQL
↔ PΨt̃L ; tR ↔ t̃R; Σ → PΣ ð8Þ

where P is the parity operator implementing the exchange
of tL and t̃L

P ¼ −P0Ph
1 ¼

0
BBBBBBBBBB@

−1
−1

1

1

1

1

1
CCCCCCCCCCA
: ð9Þ

In the above decomposition, P0 is the operator exchanging
the third and fifth components (and which acts trivially on
the Higgs PNGB matrix) and also ½P0; Ph

1� ¼ 0. Since this
is a symmetry of the Lagrangian, the Higgs potential
generated by these interactions must also be invariant
under the trigonometric parity P. The action of P on the
Higgs sector is sh ↔ ch, hence the Higgs potential will
necessarily be invariant under this exchange symmetry.
The complete discussion of the fermion sector requires

to also include the form factors capturing the effects of
compositeness. Based on the SOð6Þ symmetry transforma-
tion properties of the fields ΨQL

, Ψt̃L → gΨQL
, gΨt̃L and

Σ → gΣ, the general low-energy effective Lagrangian of
the top—twin top—Higgs sector after integrating out the
heavy fields must be of the form [40] [where we used
ðΣΣ†Þ2 ¼ 1 to truncate the series in Σ]:

L ¼ Ψ̄QL
pðΠq

0ðpÞ þ Πq
1ðpÞΣΣ†ÞΨQL

þ t̄RpΠt
0ðpÞtR

þMt
1ðpÞΨ̄QL

ΣtR þ Ψ̄t̃LpðΠ̃q
0ðpÞ þ Π̃q

1ðpÞΣΣ†ÞΨt̃L

þ ¯̃tRpΠ̃t
0ðpÞt̃R þ M̃t

1ðpÞΨ̄t̃LΣt̃R; ð10Þ

whereΠq
0;1ðΠ̃q

0;1Þ,Πt
0ðΠ̃t

0Þ, andMt
1ðM̃t

1Þ are the form factors
encoding the effect of the strong dynamics. We can see that

there is an additional requirement for the Z2 exchange
symmetry: the form factors in the visible and twin sectors
should be equal:

Πq
0;1ðpÞ ¼ Π̃q

0;1ðpÞ; Πt
0ðpÞ ¼ Π̃t

0ðpÞ;
Mt

1ðpÞ ¼ M̃t
1ðpÞ; ð11Þ

which is expressing the requirement that the structure
of the underlying strong dynamics should also be Z2

symmetric. We will require in addition the condition that
QCD and mirror QCD should be Z2 symmetric

SUð3Þc ↔ SUð3Þ0c; ð12Þ

otherwise QCD running effects will be different in the
visible and the twin sectors, which could lead to significant
(two-loop) corrections to the Higgs mass. Once the
form factor relations Eq. (11) are satisfied, the effective
Lagrangian has a global SOð6Þ × SUð6Þ invariance where
QCD and twin QCD are contained in the SU(6): SUð3Þc ×
SUð3Þ0c ⊂ SUð6Þ and the top doublet QL (singlet tR)
together with its twin partner are embedded in ð6; 6Þ
[ð1; 6Þ] of SOð6Þ × SUð6Þ. The Z2 symmetry of this
effective Lagrangian can be easily confirmed if it is written
in terms of SM quarks and hidden fermion t̃.
If the quadratic divergence is proportional to s2h þ c2h,

then it will be independent of the Higgs field and the
quadratic divergences are eliminated. However in principle
it could also be proportional to s4h þ c4h, which is still
exchange symmetric but would remain quadratically diver-
gent. Which of these situations we encounter will depend
on the representations chosen for the embedding for the top
and twin tops. The divergent contributions in the Higgs
potential can depend only on the form factors Πq

1ðΠ̃q
1Þ since

partial compositeness implies that the form factorsMt
1ðM̃t

1Þ
are ∝ð1=ΛÞ. For a simple representation like Eq. (10), there
will only be a ΣΣ† insertion, which depends at most on s2h
and c2h. We conclude that exchange symmetry in addition
with choosing simple group representations will be suffi-
cient for eliminating the quadratic divergences from the
Higgs potential generated by the top sector.
We can now complete the SO(6)/SO(5) model by

presenting the gauge (Goldstone) sector. One important
point to emphasize is that the price of choosing the minimal
coset SO(6)/SO(5) suitable for implementing the Z2 sym-
metry in the top sector is that the gauge sector will not be Z2

symmetric—one can see that clearly from the embedding
of the twin top into Ψt̃L in Eq. (6). As a consequence the
gauge contribution to the Higgs potential will be signifi-
cant. Besides being minimal another important advantage
of the SO(6)/SO(5) coset is that it is automorphic to
SU(4)/Sp(4), which has a simple fermionic UV completion.
This UV completion can render the Higgs potential from
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the gauge sector finite and small, which makes it one of the
more desirable models of neutral naturalness.
The SO(6)/SO(5) coset corresponds to five NGBs para-

metrized by hi and η with i ¼ 1, 2, 3, 4. The SO(4) of the
first four components of the SO(6) corresponds to
SUð2ÞL × SUð2ÞR of the SM electroweak group. The four
NGBs hi form a quartet of the custodial symmetry SO(4),
identified as the Higgs doublet, while η is a singlet of
custodial symmetry. As for the SO(5)/SO(4) minimal
composite Higgs model, we gauge SUð2ÞL and Uð1ÞY ⊂
SUð2ÞR to provide the electroweak gauge symmetries, and,
in addition, we also gauge the SOð2Þη subgroup, corre-
sponding to the rotations of the last two components of an
SO(6) vector. This SOð2Þη is the broken direction providing
the additional singlet Goldstone η. Since we gauge this
direction, the η will be eaten by the corresponding massive
gauge boson. In unitary gauge, only the physical Higgs
boson h remains, which is described by the nonlinear
Sigma field U in Eq. (3). Note that the quantum numbers of
the five Goldstones are identical to those in the quirky little
Higgs model of Ref. [20] based on SU(3)/SU(2), resulting
in a very similar phenomenology in the light scalar sector.
However, the gauge boson and fermion sectors are quite
different due to the different global symmetries.
The gauge interaction of the PNGB fields is most

conveniently written in terms of the Σ field and the
leading Goldstone Lagrangian is then given by L ¼
f2ðDμΣÞTDμΣ=2, where Dμ ¼ ∂μ − igWa

μTa
L − ig0BμT3

R −
ig1B0

μTη. After electroweak symmetry breaking, hhi ≠ 0,
the masses of SM and hidden gauge bosons are

m2
W ¼ g2f2ξ

4
; m2

Z ¼ m2
W

cos2θW
; m2

B0 ¼ g21f
2ð1 − ξÞ
2

;

ð13Þ

where θW is the usual weak mixing angle and ξ≡ s2h.
One of the main advantages of the minimal model

presented above is that it has a simple UV completion.
This is based on the fact that locally the cosets SO(6)/SO(5)
and SU(4)/Sp(4) are isomorphic and the SU(4)/Sp(4) coset
can be realized via fermion condensation in a UV complete
hypercolor theory. Here we briefly sketch the essential
elements of this UV completion, using the SU(4)/Sp(4)
language. In order to realize the SU(4)/Sp(4) breaking
pattern, we introduce four Weyl fermions ψ i with i ¼ 1,
2, 3, 4 [34,35]. These preons will transform in the funda-
mental representation of the hypercolor gauge group Sp(2N)
[or alternatively could also be in the spinor representation of
a different hypercolor gauge groupSOð2N þ 1Þ] [36]. In this
Letter, we only focus the Sp(2N) case. The electroweak
gauge symmetries as well as the extra Uð1Þη ≅ SOð2Þη are
embedded in the global symmetry in the following way: the
fermions ðψ1;ψ2Þ are arranged into an SUð2ÞL doublet while
the other two fermions, ψ3 and ψ4, are SUð2ÞR doublets and

these two doublets have equal and opposite Uð1Þη charges
which are listed in Table I.
Thus if the Sp(2N) hypercolor group confines and the

fermionic preons condense hψ iψ ji ≠ 0, similar to the QCD
quark condensates, the SU(4) global symmetry will be
broken to its Sp(4) subgroup, producing five NGBs. If the
vacuum has the form

V ¼
�
iσ2 0

0 −iσ2

�
; ð14Þ

the electroweak symmetries will be left unbroken by the
preon condensates [while Uð1Þη will be one of the broken
directions]. For simplicity, we assume that the preons ψ i are
all massless, so there are no additional contributions to the
Higgs potential. One can also introduce colored (twin)
preons, either scalars or fermions, to give a UV complete
implementation of partial compositeness (along with the
corresponding twin sectors). The details of those models
are beyond the scope of this current Letter, but will be
presented in a future publication.
Let us now discuss the structure of the Higgs potential.

The contributions from the gauge and top sectors can be
parametrized as

V ¼ −γs2h þ βs4h; ð15Þ

where γ ¼ γf − γg, β ¼ γf, and γg and γf are the contri-
butions from the gauge and fermion sectors. Similar to
Ref. [40], the potential from the fermion sector has a
vacuum at ξ ¼ 0.5 due to the Z2 symmetry. In order to
reduce ξ to experimentally allowed values ξ ≪ 1, the
contribution from the gauge sector must be included and
a cancellation between gauge and fermionic contributions
in the s2h term γf ≈ γg must be imposed.
To estimate the gauge contributions, one can find a low-

energy effective action for the gauge sector analogous to
Eq. (10). It turns out that in the gauge sector there is a single
form factor relevant for the Higgs potential. Furthermore, in
a particular fermionic UV completion this form factor
will have very soft UV behavior implying two sum rules on
the mass spectrum of spin-1 resonances and their decay
constants [41,42]. These sum rules will ensure the finite-
ness of the gauge contributions to the Higgs potential,

TABLE I. The quantum number of the Weyl fermion preons
under gauge symmetries Spð2NÞ × SUð2ÞL × Uð1ÞY × SUð3Þc ×
Uð1Þη. Square boxes indicate that the Weyl fermion preons are in
the fundamental representation.

Spð2NÞ SUð2ÞL Uð1ÞY SUð3Þc Uð1Þη
ðψ1;ψ2Þ □ □ 0 1 1
ψ3 □ 1 −1=2 1 −1
ψ4 □ 1 1=2 1 −1
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which can be used to achieve the cancelation between γf
and γg. As in Ref. [40], the tuning in this model will be
around the minimal tuning Δ ≃ 1=ξ. The Higgs potential
from top sector is quartic in the top Yukawa coupling,
γf ∼Oðy4t Þ, hence by power counting, it is not explicitly
dependent on the (colored) top partner masses. The explicit
expression at leading order is Ref. [43]

Vf ≃ c0
Ncf4

16π2
y4t ½−s2h þ s4h�; ð16Þ

where c0 is an order one dimensionless constant and Nc is
the number of QCD colors. This expression shows explic-
itly that the Higgs mass does not linearly depend on the
colored top partner mass, and heavy colored top partners
can be achieved without increasing the tuning, just like in
the composite twin Higgs models based on SO(8)/SO(7)
[23–25]. Since the Higgs potential is suppressed atOðy4t Þ, a
lightHiggs can be easily producedwithoutmuch tuning [44].
The most interesting new prediction of this model is a

characteristic six top signal. In the UV completion of the
model there will also be some heavy colored top partners
(in addition to the color neutral top partners responsible for
cutting off the top contributions to the Higgs potential),
which are electroweak singlets and charged under the
Uð1Þη. These colored top partners mix with our SM top
after electroweak symmetry breaking. By rotating into the
physical mass basis, these resonances (denoted by t0) can
decay into three tops through the Uð1Þη gauge interactions
via t0 → B0

μt → tt̄t. So when they are pair produced at the
LHC, a striking signal corresponding to six top final states
is predicted. The background for the six top signals is very
small, so this channel can impose significant bounds on
heavy colored top partners. At present, there are no LHC
searches for six tops, and projections from other searches
like black holes [45,46], multilepton SUSY [47], etc. are
loose. Awell designed strategy to search for six or multiple
tops produced in LHC will be presented elsewhere [48].
We have presented a novel approach to the Z2 parity

necessary to construct TH-type models. Our key observa-
tion was that, for arbitrary symmetric G=H coset spaces, a
Z2 “trigonometric parity” emerges, which can remain
unbroken after introducing the matter fields. Once the twin
partners are introduced in a manner that preserves the
trigonometric parity, the Higgs potential will have the
sh ↔ ch symmetry, which renders the Higgs potential free
of quadratic divergences. We constructed a concrete model
based on the minimal coset SO(6)/SO(5), and examined its
Higgs potential, tuning, phenomenology, and the fermionic
UV completion based on SU(4)/Sp(4), yielding the sim-
plest model of neutral naturalness. Our techniques used for
arriving at this model open a vast new field of unexplored
model building, which we expect will lead to many more
fruitful results in the future.
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