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We propose an integrability setup for the computation of correlation functions of gauge-invariant
operators inN ¼ 4 supersymmetric Yang-Mills theory at higher orders in the largeNc genus expansion and
at any order in the ’t Hooft coupling g2YMNc. In this multistep proposal, one polygonizes the string world
sheet in all possible ways, hexagonalizes all resulting polygons, and sprinkles mirror particles over all
hexagon junctions to obtain the full correlator.We test our integrability-based conjecture against a nonplanar
four-point correlator of large 1/2 Bogomol’nyi-Prasad-Sommerfield operators at one and two loops.
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Introduction.—Integrable theories are rather special 2D
quantum field theories where the scattering of fundamental
excitations factorizes into a sequence of two-body scatter-
ing events. This simplification often translates into
solvability. The world-sheet theory describing superstrings
in AdS5 × S5 is integrable [1,2]. Exploiting integrability
machinery, the full finite-size spectrum has been obtained
at any value of the coupling [3–5], yielding the energy
spectra of single strings in this curved background or—
equivalently—the spectra of anomalous dimensions of
single-trace operators in N ¼ 4 supersymmetric Yang-
Mills (SYM) theory in the planar limit.
Beyond the planar limit, we are dealing with world

sheets with handles. These induce nonlocal interactions in
the two-dimensional theory, wormholes of sorts, which
also appear in the gauge theory spin-chain description, see
Fig. 1. One would guess that such nonlocal interactions
could ruin integrability. Indeed, known degeneracies in the
spectrum of the weakly coupled gauge theory—related to
the hidden higher charges of the integrable theory—are
lifted as one takes nonplanar corrections into account [6],
and fermionic T duality—responsible for dual conformal

symmetry, which in turn is closely related to integrability
in the usual sense—is not a symmetry of string theory at a
higher genus [7,8]. Because of all this, it has been common
lore that integrability would not be useful beyond the planar
limit [9]. See [13] for a very nice summary.
On the other hand, numerous other planar quantities

have been explored at finite coupling using integrability,
from scattering amplitudes orWilson loops [14] to structure
constants [15], higher-point correlation functions [16–18],
and even mixed quantities involving correlation functions
in the presence of Wilson loops [19]. Underlying all these
computations is the idea of taming complicated string
topologies by cutting the string into smaller and simpler
patches (hexagonal or pentagonal), which are then glued
back together. This is implemented by so-called branch-
point twist field operators [20,21], whose expectation
values can be bootstrapped.
All these works strongly suggest that, instead of

thinking about the nonplanar effects as nonlocal correc-
tions to the planar world sheet, we should from the get
go consider the theory in more general topologies, treat
handles using the twist operators mentioned above, and
keep everything else as local as possible, see Fig. 1.
Following this philosophy, in this Letter, we propose a
framework for computing correlation functions at any
higher-genus order and any value of the ’t Hooft coupling
using integrability.
The data.—Our experimental data—against which we

will test our integrability predictions—are the four-point
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correlation functions of single-trace 1=2 Bogomol’nyi-
Prasad-Sommerfield (BPS) operators Qk

i ≡ trð½αi ·ΦðxiÞ�kÞ
studied in Refs. [22,23] in the simplifying configuration
α1 · α4 ¼ α2 · α3 ¼ 0. Here, αi is a null vector, and Φ ¼
ðϕ1;…;ϕ6Þ are the scalar fields of N ¼ 4 SYM theory.
The loop correlator Gk≡ hQk
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can then be decomposed according to the propagator
structures that connect the operators as

Gk ¼
Xk

m¼0
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XmYk−m; ð1Þ

where X ≡ ðα1 · α2Þðα3 · α4Þ=x212x234, Y ≡ Xj2↔3 are the R-
charge and space-time propagators, and g2 ¼ g2YMNc=16π2.
The quantum corrections dressing the propagator structures
depend on the conformally invariant cross ratios jzj2 ¼
x212x

2
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13x

2
24 and j1 − zj2 ¼ x223x
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two-loop contributions were computed in Refs. [22,23].
A key ingredient are the conformal box and double-box
functions

ð2Þ

Other key players are the so-called color factors, which
consist of color contractions of four symmetrized traces
from the four operators, dressed with insertions of gauge
group structure constants. For instance [24],

ð3Þ

where k0 ¼ k −m − 2. We explicitly performed the con-
tractions with Mathematica, for up to k ¼ 8 or 9 and
various values of m. Then, we used the fact that—by their
combinatorial nature—the various color factors should be
quartic polynomials in k and m (up to boundary cases at
extremal values of k or m), which we can fit using the
data points at finite k and m. At the end of the day, one
finds Cc

m=N2k
c k4 ¼ 2k4 þ Pc=6N2

c þOðN−4
c Þ, where Pc ¼

k4 þ 4k3mþ 42k2m2 − 92km3 þ 46m4 þ � � �, and similar
expressions for all other color factors.

We consider the further simplification of large external
operators with k ≫ 1 and m=k≡ rþ 1=2 held fixed.
Putting the above ingredients together and keeping only
the leading large k result at each genus order, we finally
obtain our much desired experimental data:
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Integrability proposal.—We propose that the connected
part of any correlator in the UðNcÞ theory, including the full
expansion in 1=Nc, can be recovered from integrability via
the formula
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The outermost sum runs over all graphs with n vertices,
including all topologies, planar and nonplanar. Each edge
(bridge) stands for a collection of one or more (planar,
noncrossing) propagators connecting two operators. Hence,
parallel edges must be identified, and this defines a skeleton
graph; see Fig. 3 for examples of such graphs.
Next, we sum over all vertex labelings (distributions of

operators on the vertices) and over all (nonzero) bridge
fillings (numbers of propagators on each edge) compatible
with the charges of the operators. All this combinatorial
process is what we call polygonization.
Next follows what we call hexagonalization: After

inserting the operators, all faces of the skeleton graphs
are hexagons or higher polygons. For the latter, we pick a
subdivision into hexagons by inserting zero-length bridges
(ZLBs). Each hexagon gives home to one hexagon form
factor whose expression was determined in Ref. [15].
Finally, we cut the graphs at the zero-length and non-
zero-length bridges, and we insert a complete basis of
mirror states; i.e., we sum over mirror excitations, on each
bridge. The mirror propagation factors depend on the
normalization and flavor of the mirror-particle states as
well as on the bridge length; their expressions can be found
in Refs. [15,16]. This last step we denote as sprinkling.
These three main processes are represented in Fig. 2 and

discussed in detail below. For illustration and simplicity, in
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this Letter, we restrict ourselves to n ¼ 4 large BPS
operators computed up to the first subleading correction
in 1=N2

c (i.e., genus 0 and genus 1).
There is one last step represented by the seemingly

innocuous S in (5) which stands for subtractions or
stratification. The point is that the sum over polygoniza-
tions discretizes the integration over the moduli space of
the Riemann surface, whose boundary contains degener-
ation points: At its boundary, a torus degenerates into a
sphere, for instance. S stands for the appropriate subtrac-
tions which remove these boundary contributions; see, e.g.,
[25]. In this Letter, we will consider four large BPS
operators on the torus, which are controlled by configura-
tions where all cycles of the torus will be populated by
many propagators. The relevant world sheets are thus very
far from the boundary of the moduli space, and we can
ignore S altogether. We will come back to it in Ref. [26],
but the essential idea is that, to obtain the correct result at a
given genus g, we must include the contributions of graphs
with a genus smaller than g embedded on a genus g surface

and subtract all the degenerations of that surface that do not
affect the embedded graph.
(Large k) polygonization.—As indicated by the first line

of (5), the polygonization proceeds in three steps:
(A) construct all inequivalent graphs with n vertices on
the given topology, (B) sum over all inequivalent labelings
of the vertices, and (C) for each labeled graph, sum over all
possible distributions of propagators on the edges (bridges)
of the graph such that each edge carries at least one
propagator.
In a generic graph on the torus, any two operators will be

connected by one or more bridges. In this work, we are
interested in the leading contribution for large operator
weights k ≫ 1 with m=k finite. In this limit, graphs with a
nonmaximal number of bridges will be suppressed by
combinatorial powers of 1=k. Namely, distributing n ∼ k
propagators on j bridges comes with a factor

X

1≤n1 ;…;nj≤nP
i
ni¼n

1 ¼ nj−1

ðj − 1Þ!þOðnj−2Þ: ð6Þ

In the leading term, all bridges carry many propagators. We
consider operator polarizations that disallow propagator
structures of the type Z≡ ðα1 · α4Þðα2 · α3Þ=x214x223; see (1).
Hence, only graphs where the four operators are connected
cyclically, as in 1-2-3-4-1, will contribute. Under this
constraint, one easily finds that the maximal power from
combinatorial factors (6) is k4. We have classified all
graphs contributing to this order and have found the six
cases shown in Fig. 3.
For these six graphs, we have to consider all possible

inequivalent operator labelings. In addition, each labeled
graph comes with a combinatorial factor (6). We list all
inequivalent labelings for the relevant graphs as well as
their combinatorial factors in Table I [27].
(Large k) hexagonalization.—Next, we further decom-

pose all polygons in Fig. 3—which are bounded by the
finite bridges—into hexagons by adding ZLBs. There are

T

FIG. 1. (a) Nonplanar effects include handles in the string world
sheet inducing nontrivial nonlocal effects. (b) The same effect can
be seen in the gauge theory; nonplanar processes induce nonlocal
interactions in the effective spin chain. (c) From a hexagonaliza-
tion point of view, we tessellate higher-genus string topologies,
always maintaining locality.

FIG. 2. We sum over all polygonizations of the torus with four
operators or holes (left figure). Each polygonization is then
broken apart into hexagons (right figure, edges with the same
arrow marks are identified). Finally, we dress the hexagon
junctions with mirror particles (sprinkling). In this example,
we sprinkle 1þ 1þ 2 mirror particles on one such hexagonal-
ization. The two particles on a zero-length bridge (right) and the
single particle on a bridge of nonzero length l (left) kick in at 4
and at lþ 1 loops, respectively, and are thus highly suppressed
(for large bridges). The remaining (middle) contribution with a
single particle on a zero-length bridge is the only one relevant for
this Letter; it kicks in at one loop already.

FIG. 3. Bridge configurations on the torus that contribute to the
leading term in 1=k for correlators of the type (1).
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typically various ways of adding these ZLBs, and they
are all equivalent. The independence on the tessellation
(chosen set of additional ZLBs) was verified explicitly in
the case of the octagon and decagon in Refs. [16,18] and
represents a consistency check of the hexagonalization.
We can easily see that all graphs in Fig. 3 are made out of
four octagons; hence, we simply need to split each of those
octagons into two hexagons. A hexagonalization of case A
is illustrated in Fig. 2. The physical operators correspond to
the thick colorful lines, the solid gray lines are the large
bridges, and the dashed lines are the ZLBs.
(Large k) sprinkling.—Finally, we have to sprinkle

mirror particles on the hexagonalizations of the previous
section. Our large k result is given by a set of octagons
separated by large bridges. Putting particles on those
bridges is very costly in the perturbation theory, as the
mirror-particle contribution is coupling suppressed by the
corresponding bridge length. Hence, we can only put
particles on ZLBs inside each octagon. Furthermore,
putting two particles on the same bridge is also very costly
(appearing at four loops only), so up to two loops only two
contributions will matter: a single particle placed on a ZLB
and two particles placed simultaneously on two distinct
ZLBs. This latter contribution is essentially the square of
the former one. The single-particle contribution has been
studied in Ref. [16] and yields

Mð1Þ ¼
�
zþ z̄− ðαþ ᾱÞαᾱþ zz̄

2αᾱ

�
ðg2Fð1Þ − 2g4Fð2ÞÞ; ð7Þ

where, for the correlators considered here, the R-charge
cross-ratios α and ᾱ are given, respectively, by

α ¼ zz̄X=Y and ᾱ ¼ 1: ð8Þ

To get the g4 term in (7), we simply expanded the integrand
in Ref. [16] to one more order in the perturbation theory.
The above factors of X and Y are contained in the first

factors in parentheses in the second line of (5) and combine

with the propagator factors in the first line of that formula.
Hence, to read off particular coefficients of monomials in X
and Y to compare with perturbation theory predictions such
as (4), we often need to consider the contribution of a few
“neighboring” graphs.
Consider for illustration the particular case A in Fig. 2.

There are four octagons to be considered, as shown in
Fig. 4. The first two contain pairs of physical edges
associated to the same external operator and thus give a
vanishing contribution, as can be easily seen by taking the
limit of two coinciding points for a generic octagon. For
each of the labelings in Table I, the resulting expressions for
the remaining two octagons are summarized in Table II.
Accounting for the labeling and combinatorial factors listed
in Table I, we can then read off the coefficient of XmYk−m as

caseAjXmYk−mcoeff ¼ k4
�ðrþ 1=2Þ4 þ ðr − 1=2Þ4

24

× ð4Mþ 2M2Þ

×
X2

a¼−2
XmþaYk−m−a

�

XmYk−mcoeff
;

where we have used that Mð1Þð1=zÞ ¼ Mð1ÞðzÞ≡M. As
explained above, this coefficient receives contributions
from a few neighboring polygonizations, accounted for
by the sum in the last line. The remaining cases follow in
complete analogy. When we sum them all, we obtain a
perfect match with (4).
Conclusions and overlook.—We proposed here a novel

formalism for computing correlation functions of local
gauge-invariant operators in N ¼ 4 SYM theory at any
genus and any order in the coupling in the large Nc ’t Hooft
expansion.
In this Letter, we already performed one very nontrivial

check of our conjecture. We reproduced the first nonplanar
correction to the correlation function of four large BPS
operators at one loop and two loops from integrability. At
the end of the day, this computation is rather simple and
uses only formulas for a single mirror particle already
worked out in Ref. [16]. In an upcoming paper [26], we
perform numerous other checks that probe all steps in our

TABLE I. All inequivalent operator labelings for the graphs that
contribute to leading order in 1=k, together with their combina-
torial factors according to (6). The order of the labels runs from
top to bottom, left to right in the graphs in Fig. 3.

Case Inequivalent labelings Combinatorial factor

A 1234,3412 m4=24
A 1324,2413 ðk −mÞ4=24
B 1234,2143,3412,4321 m3ðk −mÞ=6
B 1324,3142,2413,4231 mðk −mÞ3=6
C 1234,3412,2143,4321 m2=2 · ðk −mÞ2=2
D 1234,2143,1324,3142 m2ðk −mÞ2=2
E 1234 m2ðk −mÞ2=2
F 1234 m2ðk −mÞ2

FIG. 4. The four octagons of case A.
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proposal in great detail: the polygonization, the hexagon-
alization, the sprinkling, and the stratification. These
include finite-size corrections to the computation above,
correlators at a strict finite size, higher-genus examples, and
subtleties related to the choice of the gauge group. Through
the operator product expansion of the obtained correlators,
we can read off conformal data of non-BPS operators
beyond the planar limit.
One of the advantages of dealing with BPS external

operators (as considered in this Letter) is avoiding the
subtlety of double-trace mixing. It would be interesting to
study the mixing effects. (See [28] for very interesting first
explorations in this direction.) It would also be important to
better understand the integrand one obtains after sprinkling
the hexagons with a few mirror particles. As we increase the
number of mirror particles, it quickly becomes monstrous.
How do we tame it efficiently? Another interesting
problem—which can be realistically addressed only once
we progress with the former—concerns going to strong
coupling and making contact with the recent exciting
developments on the bootstrap approach to loop corrections
in AdS [29–36]. One can then explore various interesting
questions such as the emergence of bulk locality [37,38].Will
we find higher-genus subtleties in our integrability-based
formalism akin to the complications with supermoduli
integrations recently observed in the Ramond-Neveu-
Schwarz formalism [39–41]?
Finally, a fun project would be to resum the ’t Hooft

expansion—perhaps starting with some simplifying
kinematic limits. What awaits us there, and what can we
learn about string (field) theory?
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