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The large N expansion plays a fundamental role in quantum and statistical field theory. We show on the
example of the OðNÞ model that at N ¼ ∞ its standard implementation misses some fixed points of the
renormalization group in all dimensions smaller than four. These new fixed points show singularities under
the form of cusps at N ¼ ∞ in their effective potential that become a boundary layer at finite N. We show
that they have a physical impact on the multicritical physics of the OðNÞ model at finite N. We also show
that the mechanism at play holds also for the OðNÞ ⊗ Oð2Þ model and is thus probably generic.
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The 1=N expansion is one of the most important tools in
field theory. It has played a prominent role in QCD [1] as
well as in statistical mechanics and condensed matter
physics [2,3]. One of its key features is that it can yield
reliable results even in strongly coupled models because it
is nonperturbative in the coupling constant(s). It also has
the enormous advantage of not being linked to a particular
dimension, contrary to the usual perturbative expansions.
This latter feature has often allowed us to make a bridge
between the perturbative expansions performed around the
upper and the lower critical dimensions of a model. For
instance, at leading order in the 1=N expansion, both the
Mermin-Wagner theorem in two dimensions and the mean-
field behavior at criticality in dimensions d ≥ 4 are
retrieved, which is out of reach of both perturbative
expansions in ϵ ¼ 4 − d [4] and ϵ0 ¼ d − 2 [5].
The success of the large N analysis relies on (i) the

possibility to extend the original model to arbitrary values
of N and (ii) the fact that the model is soluble at N ¼ ∞.
This is the case not only for the OðNÞ and the gauge SUðNÞ
models but also for a large class of statistical field theories.
We show in this Letter that, surprisingly, even for the

OðNÞ model, which is the textbook example for the 1=N
expansion, the situation is not as simple as it is widely
believed. More precisely, we show on the examples of the
OðNÞ and OðNÞ ⊗ Oð2Þ models that at N ¼ ∞ some fixed
points (FPs) that play an important role even at a qualitative
level were missed by the usual large N approach [6,7]. The
presence of these fixed points changes the finite N (multi-
critical) physics of these models.
Over the years, the importance of renormalization group

(RG) FPs showing cusps has been recognized. This occurs
for FP functions such as thermodynamics potentials that are
singular for a certain value of their argument. This is the
case of the celebrated random field Ising model and is
responsible for the breakdown of supersymmetry and

dimensional reduction [8,9]. This is also the case out of
equilibrium for some reaction-diffusion problems [10]. To
the best of our knowledge, the occurrence of FPs with a
cusp is known only in replica theory applied to disordered
systems and in field theories describing out of equilibrium
statistical models (see, however, Ref. [11]). We prove
below that they also play an important role in simple field
theories such as the OðNÞ and OðNÞ ⊗ Oð2Þ models since
they are responsible for the failure of the usual 1=N
expansion.
A method of choice for studying the N ¼ ∞ limit of the

OðNÞ model is the computation of the FP effective
potentials. This is best achieved by considering Wilson’s
RG, because it is by nature functional. We recall below
the takeaway philosophy of the modern version of Wilson’s
RG known as the nonperturbative—or functional—
renormalization group (NPRG).
The NPRG is based on the idea of integrating fluctuations

step by step [12]. It is implemented on the Gibbs free energy
Γ [13–16] of amodel defined by aHamiltonian (or Euclidean
action) H and a partition function Z. To this model
is associated a one-parameter family of models with
Hamiltonians Hk ¼ H þ ΔHk and partition functions Zk,
where k is amomentum scale. InHk,ΔHk is chosen such that
only the rapid fluctuations in the original model, those with
wave numbers jqj > k, are summed over in the partition
function Zk. Thus, the slow modes (jqj < k) need to be
decoupled inZk, and this is achieved by giving them a mass
of order k, that is, by taking for ΔHk a quadratic (masslike)
term, which is nonvanishing only for the slow modes:

Zk½J� ¼
Z

Dφi expð−H½φ� − ΔHk½φ� þ J · φÞ; ð1Þ

withΔHk½φ�¼1
2

R
qRkðq2ÞφiðqÞφið−qÞ, where, for instance,

Rkðq2Þ ¼ ðk2 − q2Þθðk2 − q2Þ and J · φ ¼ R
x JiðxÞφiðxÞ.
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The k-dependent Gibbs free energy Γk½ϕ� is defined as the
(slightly modified) Legendre transform of logZk½J�:

Γk½ϕ�þ logZk½J� ¼ J ·ϕ−
1

2

Z
q
Rkðq2ÞϕiðqÞϕið−qÞ; ð2Þ

with
R
q ¼

R
ddq=ð2πÞd. With the choice of regulator

function Rk above, Γk½ϕ� interpolates between the
Hamiltonian H when k is of order of the ultraviolet cutoff
Λ of the theory, ΓΛ ∼H, and the Gibbs free energy Γ of the
original model when k ¼ 0, Γk¼0 ¼ Γ. The exact RG flow
equation of Γk gives the evolution of Γk with k between
these two limiting cases and reads [14]:

∂tΓk½ϕ� ¼
1

2
Tr(∂tRkðq2ÞfΓð2Þ

k ½q;−q;ϕ�þRkðqÞg−1); ð3Þ

where t ¼ logðk=ΛÞ, Tr stands for an integral over q and a

trace over group indices, and Γð2Þ
k ½q;−q;ϕ� is the matrix of

the Fourier transforms of δ2Γk=δϕiðxÞδϕjðyÞ.
In most cases, Eq. (3) cannot be solved exactly and

approximations are mandatory. The best-known approxi-
mation consists in expanding Γk in powers of the deriv-
atives of ϕi and to truncate the expansion at a given finite
order [8,17–25]. The approximation at lowest order is
dubbed the local potential approximation (LPA). For the
OðNÞ model, it consists in approximating Γk by

Γk½ϕ� ¼
Z
x

�
1

2
ð∇ϕiÞ2 þ UkðϕÞ

�
; ð4Þ

where, bydefinition,ϕ ¼ ffiffiffiffiffiffiffiffiffi
ϕiϕi

p
. Fixedpoints are foundonly

for dimensionless quantities, and thus we define the dimen-
sionless field ϕ̃ and potential Ũk as ϕ̃ ¼ v−1=2d kð2−dÞ=2ϕ and
Ũkðϕ̃Þ ¼ v−1d k−dUkðϕÞ, with v−1d ¼ 2d−1dπd=2Γðd=2Þ. The
LPA flow of Ũk reads:

∂tŨtðϕ̃Þ ¼ −dŨtðϕ̃Þ þ
1

2
ðd − 2Þϕ̃Ũt

0ðϕ̃Þ

þ ðN − 1Þ ϕ̃

ϕ̃þ Ũt
0ðϕ̃Þ þ

1

1þ Ũt
00ðϕ̃Þ : ð5Þ

The usual large N limit of the LPA flow [7] is obtained by
(i) replacing the factorN − 1 byN, (ii) dropping the last term
in Eq. (5) because it is assumed to be subleading compared to
the term proportional to N, and (iii) rescaling the field by a
factor

ffiffiffiffi
N

p
and the potential by a factor N: ϕ̄ ¼ ϕ̃=

ffiffiffiffi
N

p
,

Ū ¼ Ũ=N. As a consequence of these three steps, the explicit
dependence in N of the LPA flow of Ūðϕ̄Þ disappears in the
large N limit. The crucial point is that the resulting LPA
equation on Ū can be shown to be exact in the limit N → ∞
[6] (see, however, below). Thus, the problem of finding all
FPs of the OðNÞ model, ∂tŪtðϕ̄Þ ¼ 0, in the limit N → ∞

boils down to solving the LPA FP equation on Ūðϕ̄Þ having
dropped the last term inEq. (5). This has beendone in detail in
several papers [7,26]. The result is the following: In a generic
dimension d < 4 and apart from the Gaussian FP, there is
only one FP which is the usual Wilson-Fisher (WF) FP. The
exception to the rule above occurs with the Bardeen-Moshe-
Bander FPs that play no role here [27–30].
We now show that the procedure described above is too

restrictive and eliminates some FPs that are physically
relevant. The point is that the last term in Eq. (5) is
negligible compared to the term proportional to N − 1 only
if it reaches a finite limit when N → ∞. We show that
because of singularities this is not necessarily the case and
that the last term in Eq. (5) can also be of order N.
It is convenient for what follows to change variables.

FollowingRef. [31],wedefineVðμÞ ¼ UðϕÞ þ ðϕ −ΦÞ2=2,
with μ ¼ Φ2 and ϕ −Φ ¼ −2ΦV 0ðμÞ. As above, it is
convenient to rescale μ and VðμÞ: μ̄ ¼ μ=N, V̄ ¼ V=N. In
terms of these quantities, the FP equation for V̄ðμ̄Þ reads:

0 ¼ 1 − dV̄ þ ðd − 2Þμ̄V̄ 0 þ 4μ̄V̄ 02 − 2V̄ 0 −
4

N
μ̄V̄ 00: ð6Þ

This equation has two remarkable features. First, it is much
simpler than Eq. (5) because the nonlinearity comes only
from the ðV̄ 0Þ2 term. Second, it is the LPA equation obtained
from the Wilson-Polchinski version of the NPRG [32–35]:
V and U are therefore related by the Legendre transform
Eq. (2). Equation (6) has therefore also beenwidely studied in
the literature. The usual large N analysis performed in this
version of theNPRGconsists here again in neglecting the last
term inEq. (6) because it is suppressedby a factor1=N. Under
the assumption that this term is indeed negligible in the large
N limit, the resulting equation becomes independent ofN and
an exact (implicit) solution of this equation is known
[36] (for concreteness,we plot it in theSupplementalMaterial
[37]). However, at largeN, it is clear in Eq. (6) that we have to
deal with singular perturbation theory since the small
parameter used for the expansion, that is, 1=N, is in front
of the term of highest derivative, that is, V̄ 00. In this case, it is
well known that in general the term proportional to V̄ 00 cannot
be neglected and that singular solutions can exist at 1=N → 0
[38]. In otherwords, at finite but largevalues ofN, a boundary
layer can exist for a particular value of the argument μ̄ that
becomes a singularity at N ¼ ∞. We now show that this is
what indeed occurs.
It is particularly simple to understand in Eq. (6) why and

how at N ¼ ∞ a solution exhibiting an isolated singularity
for a given μ̄ ¼ μ̄0 can exist. Consider the intervals on the
left and on the right of μ̄0. On these intervals, V̄ðμ̄Þ is
regular by definition. This implies that the last term in
Eq. (6) can safely be neglected at large N on these two
intervals. To get a singularity where this term can play a
role in Eq. (6) at N ¼ ∞, it is necessary that the solutions
on the left and on the right of μ̄0 match at μ̄0 but with two
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different slopes. It is trivial to build such a solution: Take on
the right of μ̄0 the Wilson-Fisher solution of Eq. (6)
(without the last term) and on the left V̄ðμ̄Þ ¼ μ̄=2, which
is a trivial solution of Eq. (6). In each dimension the
matching point is the intersection of these two curves. For
instance, we have numerically found μ̄0 ¼ 0.694 in d ¼ 3.2
and μ̄0 → 1=2 when d → 4−. Then, at finite N, the
boundary layer around μ̄0 where the left and right solutions
match smoothly (but abruptly) can be easily computed at
leading order in 1=N by (i) introducing another scaled
variable μ̃ ¼ Nðμ̄ − μ̄0Þ and (ii) writing down the FP
equation involving only the leading term in 1=N around
μ̃ ¼ 0, having assumed that the derivative of the slope V̄ 0
with respect to μ̃ are of order 1 around μ̃ ¼ 0 (see Sec. I of
the Supplemental Material for a complete description of
this procedure [37]). We find that the thickness of the
boundary layer is of order 1=N in terms of the variable μ̄,
which implies that V̄ 00 is of order N within the layer. This is
the reason why the last term in Eq. (6) is not negligible
within the layer. This means that the FP solution V̄ðμ̄Þ does
not scale uniformly in μ̄ as 1=N—which is assumed in
the usual large N analysis—but inhomogeneously depend-
ing on whether μ̄ is located inside or outside the boundary
layer. It is important to note that due to this singularity,
the usual argument about the exactness of the LPA in the
limit N → ∞ is not valid anymore. We have therefore
studied the stability of the result obtained above by
including the next term of the derivative expansion
that consists in replacing ð∇ϕiÞ2 by ZkðϕÞð∇ϕiÞ2 þ
YkðϕÞðϕi∇ϕiÞ2 in Eq. (4): all conclusions drawn with
the LPA alone are still valid.
Once the boundary layer has been computed from

Eq. (6), it is particularly interesting to transform the FP
solution V̄ðμ̄Þ back to Ūðϕ̄Þ. For reasons that will be clear
in the following, we call C2 this FP. In d ¼ 3.2, C2 exists
and we show it in Fig. 1. Three interesting features appear
on this figure. First, a limiting shape of C2 clearly shows up
when N is increased, which is consistent with the existence
of a singular FP at N ¼ ∞. Second, for the large values of
ϕ̄, that is, ϕ̄ > 0.965, C2 coincides with the WF FP,
whereas it does not at smaller field. Third, between
ϕ̄ ¼ 0þ and ϕ̄ ≃ 0.965, the slope of Ū0ðϕ̄Þ is very close
to −1, which makes the last term of Eq. (5) very large. We
have checked (i) that this term scales exactly as N at large
N, and (ii) that, using the relation Φ ¼ ϕþ Ū0ðϕ̄Þ, the
interval ϕ ∈ ½0þ; 0.965� is exactly mapped onto the (very
narrow) boundary layer around μ̄0 in the ðμ̄; V̄Þ para-
metrization. Fourth, at finite N, Ūðϕ̄Þ is a regular function
of ϕ̄2 and thus Ū0ðϕ̄ ¼ 0Þ ¼ 0. Then, Ū0ðϕ̄Þ shows an
almost vertical slope at large N at ϕ̄¼0 such that Ū0ðϕ̄¼0Þ
becomes undefined when N → ∞. We have checked using
again Φ ¼ ϕþ Ū0ðϕ̄Þ that the (very narrow) interval where
Ū0ðϕ̄Þ varies abruptly around the origin is exactly mapped
onto the interval where V̄ðμ̄Þ ¼ μ̄=2, that is, ½0; μ̄0�.

A first natural question is to wonder whether C2 is the
only singular FP of the OðNÞ model at N ¼ ∞. We have
found that C2 appears just below d ¼ 4 at N ¼ ∞ and that,
as expected, it does not appear alone but together with
another FP that we call C3. The indices 2 and 3 in C2 and
C3 refer to their degree of instability, that is, the number of
relevant directions of the RG flow in their neighborhood.
These FPs can appear together because their degree
of instability differs by one unit. The FP C3 is trivially
found from Eq. (6) at large N. It is made of two parts:
For μ̄ ∈ ½0; 2=d�, V̄ðμ̄Þ ¼ μ̄=2, and for μ̄ ∈ ½2=d;∞½,
V̄ðμ̄Þ ¼ 1=d. At finite N, these two parts also connect
across a boundary layer of width 1=N. When d → 4−, the
WF part of C2 at N ¼ ∞ corresponding to μ̄ > μ̄0 ¼ 1=2
flattens and tends to the value 1=4. The potentials of C2 and
C3 become identical in this limit, which confirms that they
coincide in this limit and that they appear together below
d ¼ 4 (see the Supplemental Material where the potentials
are plotted [37]).
A second natural question is to wonder whether the FPs

found above are nothing but a curiosity occurring atN ¼ ∞
with no impact on the physics at finite N, in much the same
way as the Bardeen-Moshe-Bander FP. We have checked
that this is not at all the case. The FPs C2 and C3 found
above at N ¼ ∞ are indeed the limits of FPs found at finite
N [39]. These FPs are regular for all values of the field.
They play a prominent role for the multicritical physics of
the OðNÞmodel at least for sufficiently large values ofN. In
particular, their presence solves a paradox: It is well known
that the perturbative tricritical FP T2, found perturbatively
for all N in d ¼ 3 − ϵ, is not found at N ¼ ∞ for d < 3.
This paradox is solved when realizing that T2 appears for
any N at d ¼ 3− where it is Gaussian, and, when N is large
enough, disappears when decreasing d by colliding with C3

on a line dcðNÞ in the ðN; dÞ plane whose equation is
dcðNÞ ≃ 3–3.6=N [39–41]. Thus, the interval in d where it
exists shrinks to 0 when N increases. We notice that both
C2 and C3 exist at finite and large N in d ¼ 3, and it would
be very interesting to find models whose multicritical
behavior is described by these FPs.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4
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N =250

N =125

N=55

FIG. 1. Ū0ðϕ̄Þ for the C2 FP of Eq. (5) for different values of N
and the Wilson-Fisher FP for N ¼ 100 in d ¼ 3.2.
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A third natural question is whether what we have found
is specific to the OðNÞ model or is likely to be generic. We
have pragmatically investigated the OðNÞ ⊗ Oð2Þ model
along the same line as above to answer this question.
The order parameter of the OðNÞ ⊗ Oð2Þ model is the

N × 2 matrix Φ ¼ ðφ1;φ2Þ [42–44] and the Hamiltonian
is the sum of the usual kinetic terms and of the potential
Uðρ; τÞ, where ρ and τ are the two OðNÞ ⊗ Oð2Þ
independent invariants: ρ¼φ2

1þφ2
2 and τ¼½ðφ2

1−φ2
2Þ2=4þ

ðφ1 ·φ2Þ2�. The LPA ansatz is identical to Eq. (4) up to the
replacement UkðϕÞ by Ukðρ; τÞ. The standard large N limit
predicts that, aside from the Oð2NÞ-symmetric FP, two
nontrivial FPs exist in 2 < d < 4: the chiral fixed point Cþ,
which describes the second order transition between the
ordered and the disordered phases, and the antichiral fixed
point C−, which is tricritical [45–48]. Since the LPA
equation for the potential is much more involved than in
the OðNÞ model, we have decided to expand the FP
potential Uðρ; τÞ around its minimum κ̃:

Ũðρ̃; τ̃Þ ¼
X
n;m

1

m!n!
ãmnðρ̃ − κ̃Þmτ̃n; ð7Þ

where ãmn are coupling constants. The Oð2NÞ FP is
retrieved by setting ãmn ¼ 0 for n ≥ 1 and by rescaling
the couplings according to

κ̃ ¼ N−1κ̄; ãmn ¼ N−m−2nþ1āmn; ð8Þ

which is a direct consequence of the usual rescaling: φ̄i ¼
φ̃i=

ffiffiffiffi
N

p
and Ū ¼ Ũ=N. Once Ū is Taylor expanded around

its minimum, the exactness of the LPA flow at N ¼ ∞
translates in a hierarchical structure of the flows of the
couplings: for instance, for the Oð2NÞ invariant flow, the
flow of ām0 depends only on the set of couplings fāp0g
with p ≤ m. The system of FP equations of the ām0’s is
therefore close and soluble whatever the value ofm, and the
couplings fām;0g are said to be “perfect coordinates” [49].
The same holds true for Cþ with the rescaling Eq. (8):
at N ¼ ∞, the FP equations of the couplings āmn with
2mþ 4n ≤ 2l depend only on couplings ām0n0 with
2m0 þ 4n0 ≤ 2l.
For C−, the situation is different because the couplings

do not satisfy Eq. (8) with finite āmn’s in the limit N → ∞.
By studying numerically the behavior of these couplings,
we have found the proper scaling for the C− couplings:

ã0n ¼ N−2nþ1ā0n; ãmn ¼ N−m−2nāmnðm ≠ 0Þ: ð9Þ

As a consequence of these scalings, the āmn’s are not
perfect coordinates for C− and the LPA is therefore not
exact whenN → ∞. However, by using an ansatz including
all kinds of second and fourth order derivative terms, we
have checked in detail that the scaling Eq. (9) is valid
independently of the LPA and remains the same beyond

this approximation (see Sec. III of Supplemental Material
for details of this ansatz [37]). We note that if were using
for C− the usual rescaling Eq. (8), φ̄i ¼ φ̃i=

ffiffiffiffi
N

p
and

Ū ¼ Ũ=N, we would find that the scaled couplings āmn
(m ≠ 0) vanish in the limit N → ∞. This would invalidate
the large N analysis based on this scaling.
The scaling Eq. (9) together with the fact that the āmn’s

are not perfect coordinates at large N for C− has dramatic
consequences that we now describe. When d is decreased
towards d ¼ 3, we numerically find that the FP couplings
āmn at C− diverge. For instance, ā20 and ā11 diverge as
ðd − 3Þ−1=2 while ā12, ā21, and ā30 as ðd − 3Þ−1. We have
also computed the four most relevant eigenvalues σ1;…;4 of
the flow at C−, and we have found at N ¼ ∞, σ1 ¼ −2,
σ2 ¼ d − 4, σ3 ¼ 2ðd − 3Þ, σ4 ¼ 4 − d. when d → 3þ
[50]. In our convention, a negative eigenvalue corresponds
to a relevant direction. We conclude that when d → 3þ, the
first irrelevant eigenvalue vanishes while the coordinates of
the FP diverge. This clearly suggests that (i) C− collides
with another FP in d ¼ 3whenN ¼ ∞ and then disappears
below d ¼ 3 and that (ii) the coordinates of the other FP do
not scale with N as in Eq. (9), which explains that the
collision can occur only if the coordinates āmn of C− no
longer have a finite limit when d → 3þ. We have looked for
other rescalings than Eq. (9) yielding other FPs and we
have found two such FPs that we call M2 and M3, whose
coordinates scale as

ã0n¼N−1ā0n; ãmn¼N−m=2−3n=2āmn ðmnÞ≠ ð01Þ: ð10Þ

We have checked thatM2 andM3 appear simultaneously at
N ¼ ∞ below d ≃ 3.37 and that C− and M3 collide in
d ¼ 3 and both disappear below this dimension. Neither
M2 nor M3 are perturbative FPs since they are never
infinitesimally close to the Gaussian FP. We have checked
that as in the OðNÞ model, these two FPs exist at finite N
and are physically relevant. They are indeed responsible for
the disappearance of C− on a line dcðNÞ, which, in turn,
explains why C− is not found around d ¼ 2 in the ϵ0 ¼
d − 2 expansion of the OðNÞ ⊗ Oð2Þ nonlinear sigma
model [51]. We notice that within the standard 1=N
analysis, not only M2 and M3 are not found, but C− is
not found to disappear below d ¼ 3 for N ¼ ∞. We
conclude that, contrary to the OðNÞ model, the standard
large N analysis does not only miss some FPs but predicts
the existence of C− for 2 < d < 3where, in fact, it does not
exist. It is intriguing to notice that at N ¼ ∞ and in both
models it is exactly in d ¼ 3 that the perturbative tricritical
FP, either T2 or C−, disappears.
To conclude, we have found new FPs in both the OðNÞ

and OðNÞ ⊗ Oð2Þ models whose effective potentials show
singularities at N ¼ ∞ and boundary layers at finite N.
This makes it difficult to find them with the usual toolbox
of the 1=N approach. We have also shown that these FPs
play an important role in the multicritical physics of these
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models. In particular, some of them collide with the
standard, that is, perturbative tricritical FPs in some
dimension, which makes these latter FPs disappear. It is
still an open question to have an exhaustive classification of
all possible singular FPs of the OðNÞ model at N ¼ ∞ and
in particular of the subset of these FPs that survive and play
a physical role at finite N. We conjecture that what we have
found for the tricritical FPs repeats for all the multicritical
FPs. It is also an open and intriguing question to understand
why the new FPs found above all have at least two
directions of instability and whether new FPs with only
one unstable direction could exist. It would also be
interesting to integrate the flow to obtain the phase diagram
in the presence of all these FPs.
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