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On August 22, 2014, the satellites GSAT-0201 and GSAT-0202 of the European GNSS Galileo were
unintentionally launched into eccentric orbits. Unexpectedly, this has become a fortunate scientific
opportunity since the onboard hydrogen masers allow for a sensitive test of the redshift predicted by the
theory of general relativity. In the present Letter, we describe an analysis of approximately three years of
data from these satellites including three different clocks. For one of these, we determine the test parameter
quantifying a potential violation of the combined effects of the gravitational redshift and the relativistic
Doppler shift. The uncertainty of our result is reduced by more than a factor 4 as compared to the values of
Gravity Probe A obtained in 1976.
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Introduction.—The frequency shift that clocks experi-
ence in a gravitational potential is a central prediction of the
theory of general relativity. The universal validity of this
gravitational redshift is a consequence of the Einstein
equivalence principle, which provides the underlying
foundation of the theory [1]. The MICROSCOPE mission
[2] could recently achieve an improved test of another
aspect of the Einstein equivalence principle by testing the
universality of free fall of two test masses in orbit with a
precision of η < 2 × 10−14. The gravitational redshift has,
so far, been tested with a much lower precision [3–6]. Its
first experimental verification was provided by Pound and
Rebka in 1960 [3], who observed the shift using a
Mössbauer emitter and absorber over a height difference
of ≈23 m. The most accurate test so far was obtained by the
Gravity Probe A (GPA) mission, which launched a hydro-
gen maser on board a sounding rocket to a height of
10 000 km above ground. During the flight, the frequency
generated by the maser on the rocket was compared with a
corresponding maser on the ground. The total relativistic
frequency shift was found to be within 7 × 10−5 of the
value predicted by general relativity [5].
In August 2014, an unexpected opportunity to reduce the

uncertainty of this fundamental test even further arose
through a problem during the launch of the satellites GSAT-
0201 and GSAT-0202. They were erroneously placed into
elliptical orbits. Today, the eccentricity of the orbits is 0.16.

Since these satellites carry passive hydrogen masers, this
makes them attractive for a test of the gravitational redshift.
Thus, in this Letter, we examine if and how the clock data
from these satellites can, indeed, be used to reduce the
uncertainty of such a test as compared to GPA.
Gravitational redshift for Galileo satellites.—The

elapsed coordinate time t of a clock moving in a weak
gravitational potentialU at a velocity v can be derived from

Z
dt ¼

Z
dτ

�
1 −

U
c2

þ v2

2c2

�
; ð1Þ

where t, and τ are the coordinate time and the clock’s
proper time, respectively. The second term in the bracket
accounts for the gravitational redshift and the third for the
relativistic Doppler effect. The associated time delay is
routinely taken into account in global navigation satellite
system (GNSS) receivers [7]. For a clock on a Kepler orbit
of semimajor axis a and eccentricity e, it can be written as

Δt ¼
�
3GME

2ac2
þΦ0

c2

�
tþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GMEa

p
c2

e sinEðtÞ; ð2Þ

with EðtÞ being the eccentric anomaly of the orbit and Φ0

the gravitational potential at the location of the ground
based reference clock. This equation includes a linear first
term and a second term that is modulated due to the
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eccentricity of the orbit. The latter is applied as a correction
in GNSS receivers, typically reformulated in the form

trel ¼
2v⃗ · r⃗
c2

: ð3Þ

With the Galileo satellites GSAT-0201 and GSAT-0202,
the eccentricity of the orbit is e ≈ 0.16, and the relativistic
eccentricity correction reaches a peak amplitude of ap-
proximately 370 ns. This corresponds to a peak to peak
modulation of the relative frequency of Δf=f≈
1 × 10−10. A periodic modulation of this size is clearly
discernible, given the relative frequency stability of the
passive hydrogen maser clocks on board. Ground-based
relative frequency stability tests performed on these clocks
show a flicker noise floor at the level of an Allan deviation
of σ ≈ 10−14 at the time scale of an orbital revolution period
T ¼ 12.94 h [8].
Data processing and analysis.—The pseudorange and

carrier-phase observations from GSAT-0201 and GSAT-
0202 have been collected by stations of the International
GNSS Service Multi-GNSS Experiment network across the
globe. This allows the estimation of the position r and clock
offsets τ for each satellite. For the purpose of the present
experiment, this was specifically done by the Navigation
Support Office of ESA ESOC. This ensured high precision,
availability, reliability, and full control of the process.
The clock data are sampled every 30 s interval, the

satellite position and velocity are estimated and provided
every 300 s from which intermediate values are obtained by
interpolation. The clock estimates feature random walk
noise and a linear drift, which is on the order of 1 μs=h and
results from a residual contribution of the first term of
equation (2) as well as the natural drifts of the satellite clock
and the clock of the selected reference ground station.
The data considered in our analysis starts on January 11,

2015, extending to December 16, 2017, thus, covering
almost three years. Every Galileo satellite carries two
rubidium and two hydrogen maser clocks, with only one
of them being the active transmission clock, as configured
by operations. During our period of observation, the data
were obtained from five different clocks on two satellites
labeled clock 1 to 5 as given in Table I. Clock 4 is a
Rubidium Atomic Frequency Standard (RAFS) on GSAT-
0202 which is of inferior clock stability as compared to the
passive hydrogen maser (PHM) clocks. Clock 2 is linked to

PHMA on GSAT-0201, for which ESA has confirmed non-
nominal drift during this period. Thus, we do not include
these two clocks in our further analysis and focus on the
data from the nominal PHM clocks 1, 3, and 5 only.
Preprocessing of the clock data as done by the

Navigation Support Office of ESA ESOC already included
the relativistic correction given in Eq. (3). This model,
however, is not sufficient to meet the requirement of a
precision test, as the equation is derived assuming an ideal
Kepler orbit without perturbations. Thus, we first removed
the correction of Eq. (3) and applied a refined relativistic
correction, instead. This refined correction is obtained by
numerically integrating Eq. (1) along the orbit and by
including the quadrupole moment into Earth’s gravitational
potential U. The latter moment is not included in the clock
estimates as provided by ESOC. Correspondingly, a
Fourier analysis of the raw clock data shows a peak at
twice the orbital revolution frequency. This peak is sig-
nificantly decreased when the improved corrections are
applied as shown in Fig. 1.
Before entering into the analysis, outliers have been

identified and removed from the clock estimates based on a
5σ criterion, typically removing only a few data points per
day. In addition, few days (< 3 per clock) with strongly
disturbed data have been removed upon manual inspection.
To estimate the magnitude of a possible violation of

general relativity, we introduce a test parameter α that
quantifies any deviation from the refined relativistic model,
following the definition given in [1]. There, a violation of
the relative frequency shift of a stationary clock due to a
change in the gravitational potential ΔU is modeled as

TABLE I. Clocks set for transmission on the respective
satellites during the measurement span.

Clock Satellite Start End Span [d] Clock no.

PHM-B 0201 2015/01/11 2016/06/15 522 1
PHM-A 0201 2016/07/02 2017/12/16 533 2
PHM-B 0202 2015/03/19 2015/11/04 231 3
RAFS 0202 2015/11/05 2016/07/02 241 4
PHM-A 0202 2016/07/03 2017/12/16 532 5

FIG. 1. Top: Correction as applied to the ESOC clock data for
the first day in GPS week 1938 (a linear drift has been removed).
The correction is the difference of Eq. (3) and the numerically
integrated redshift model along the perturbed real orbit of GSAT-
0202. This includes the redshift contribution from the mass
quadrupole (J2) which is shown separately in addition. Bottom:
An FFT of the differentiated clock estimates of GSAT-0202 for
GPS week 1938 before and after the correction was applied.
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Δf
f

¼ ð1þ αrsÞ
ΔU
c2

; ð4Þ

where αrs ¼ 0 complies with the prediction of general
relativity. A corresponding test parameter α including the
relativistic Doppler effect is used in our model and is
determined in a least squares fit to the postprocessed clock
estimates.We explored twooptions for this fit. The first one is
the application of amodel based on the numerical integration
of Eq. (1). The second one is to numerically differentiate the
clock data τ, instead, and to use the integrand of Eq. (1) as our
model, which describes the relative frequency shift rather
than the elapsed time. The latter approach has the advantage
in that it converts the predominant random walk noise into
white noise. This leaves only small residual correlations in
the fitted data, which we take into account by using a
generalized least squares algorithm [9,10].
The full relativistic model, in this case, is given by

frel;i ¼ −
GME

ric2

�
1 −

J2a2E
r2i

�
z2i
r2i

−
1

2

��
þ v2i
2c2

; ð5Þ

where J2 describes Earth’s mass quadrupole, aE is Earth’s
equatorial radius, and ri, zi, and vi are provided by the orbit
solution with i indexing the samples in the time series of
data. The latter have been transformed into an inertial frame
and interpolated at the time of the clock samples. This
model is then scaled by the test parameter α and fitted to the
postprocessed and differentiated clock data fi for each day
separately. The clock is modeled by a constant offset a1 for
each day. The latter time span is used for the fit, since orbits
are processed day by day without continuity requirements
at daily boundaries. Thus, the estimates of α and a1 are
obtained from the equation

ðα̂; â1Þ ¼ argmin
XN
i

ðfi − αfrel;i − a1Þ2; ð6Þ

with a maximum of N ¼ 2880 samples per day.
To validate our method, we analyzed two types of test

data sets where we either injected an artificial test signal
with α ≠ 0 based on our model (5) into the original data or
superimposed a test signal with modeled drift and random
walk noise. This way, we could verify that the mean value
and error estimate of our final result are consistent, and
potential error sources, e.g., from numerical differentiation
due to the finite sample size or residual correlation of fit
parameters. are negligible throughout the analysis.
Upon processing the data of all three clocks, we are left

with a distribution of fitted test parameters α for the three
clocks as shown in Fig. 2. Then, we determine the weighted
average of the daily α results for each clock using
the inverse squared fit error as a weight, as well as the
combined statistical uncertainty. From this, we obtain the
results given in the third line of Table II. The (varying) bias

observed in the distribution of all three clocks indicates that
there is one or several systematic effects present that need
to be addressed carefully. Thus, before discussing the
distributions further, we continue with an assessment of
the direct effects onto the clock frequency from magnetic
fields and temperature variations, as well as systematic
model uncertainties.
Estimate of systematic uncertainties.—First, we consider

a potential systematic error in the applied orbit solution.
Here, any radial error in the orbit estimation will map into
the clock estimate as δτi ¼ δri=c potentially introducing a
systematic error. Imperfect modeling of the reaction of the
satellite to solar radiation pressure is a potential cause of
such systematic orbit errors. This may reach a size of a few
centimeters, see, e.g., [11]. To assess the magnitude of such

FIG. 2. Distribution of daily test parameter results for clocks 1,
3, and 5. Error bars are the 1σ fit errors from the respective least
squares fit. Gaps in the data of clocks 1 and 3 are when there was
no clock transmission. Note, also, that we exclude 13 days in the
data of clock 5 coinciding with an interruption of clock operation
of PHM A following day 670.

TABLE II. Error budget of statistical and systematic uncertain-
ties. Note that the different contributions refer to different
underlying probability distributions. The statistical error is the
1σ error as determined from the distribution of fit results.
Systematic uncertainties for magnetic fields and temperature
are upper and lower bounds (assuming uniform distribution). The
orbit uncertainty is, again, a 1σ interval. The total result for each
clock is then derived from the posterior of the combined
corrections and the stated uncertainty represents the equal tailed
68% interval (see Fig. 3).

α� Δαð×10−5Þ Clock 1 Clock 3 Clock 5

Days included 414 167 510
Statistics −0.7� 0.5 8.4� 1.2 3.7� 0.4
Orbit model −2.2� 0.5 −8.1� 0.9 −1.5� 0.9
Temperature 0� 2.0 0� 2.0 0� 2.0
Magnetic field 0� 0.8 0� 0.8 0� 0.8
Total −2.9� 1.4 0.3� 1.9 2.2� 1.6
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a systematic orbit model error, additional and independent
laser ranging measurements by the International Laser
Ranging Service (ILRS) are used. They are made possible
by the retroreflectors mounted on each of the satellites. A
dedicated effort was made by ILRS to support the project
by increasing the number of measurements for the satellites
GSAT-0201 and 0202, see [12]. From these laser ranging
measurements, the radial one-way residuals with respect to
the modeled orbit solution were generated by ESOC. These
can be converted into a bias in the time domain by dividing
by −c.
Then, in a first approach, we fit these biases with our

redshift model on a daily basis following the same approach
that was applied to the clock data. This results in a
distribution of daily α corrections. Then, from this, we
derive the correction to the α mean value and its associated
uncertainty. The accuracy of this estimate, however, is
limited because there are only a few satellite laser ranging
(SLR) measurements per day, which increases the uncer-
tainty of each daily fit. Thus, as an alternative approach, we
also do a global linear regression of the converted SLR data
and the corresponding redshift model data for each clock.
We, thereby, observe a good agreement from the results of
both methods in our estimates for clock 5, while, for clocks 1
and 3, we only rely on the result from the global regression.
Next, we address the effect of varying magnetic fields.

Since the Galileo satellites are not equipped with magne-
tometers, we relied on the International Geomagnetic
Reference Field model for Earth’s magnetic field [13].
The expected variation of the magnetic field, due to the
satellites’ movement, is of the order of few mG, typically
spanning ≈7 mG peak to peak. Consulting data from the
THEMIS mission [14] as well as the Tsyganenko model
[15] at Galileo altitudes, we estimate the uncertainty of our
model to be less than 10%. The effect on the clock was
estimated using the sensitivity of the PHMs to be
Δf=f ¼ 3 × 10−13/G as given in [8]. We took this to be
the sensitivity for a field applied along the most sensitive
clock axis, since no further information on field orientation
is given in [8]. A conservative estimate was obtained by
assuming that the effect is caused by the total magnetic field
rather than by its projection onto a specific PHM axis.
Using this model, we correct the clock estimates and rerun
the analysis as described above resulting in a corrected α
estimate. Doing so, we consider both added (αþ) or
subtracted (α−) correction, since no information is available
from [8] to deduce the sign of the imposed frequency shift.
Then, for the final result, we use the difference ΔαB ¼
αþ − α− as the total uncertainty from magnetic field
variations.
The effect of temperaturevariations is also estimated using

the sensitivity given in [8] which is Δf=f ¼ 2 × 10−14=K.
The clocks on board the satellites are actively temperature
stabilized within a maximum allowed deviation of
ΔT ¼ �0.5 K. The thermal control period is of the order

of 10 min and, thus, more than a factor of 50 faster than the
period of orbital revolution [16]. Thus, averaging over many
control oscillations per orbit should already significantly
suppress the effective temperature variation at orbital fre-
quency. In addition, the incident solar radiation presents the
dominant source of temperature variation, and the phase of
any residual temperature systematic at orbital frequency
should be fixed relative to the sun position. Thus, further
decorrelation with a redshift violation signal occurs when
analyzing data spanning more than one year. Based on this,
we conservatively assume a combined suppression factor of
10 equivalent to a maximum contribution from temperature
variation to α of �2 × 10−5 in each clock.
In addition to the effects discussed above, further

possible systematics from reference ground clocks, atmos-
pheric corrections, or phase wind up due to the rotation of
the satellite about the earth-pointing axis have been
assessed. We estimate their systematic contribution to α
at the low 10−6 level, since they are averaged over many
ground stations, and a possible diurnal modulation will be
disentangled from a redshift violation signal at an orbital
period within a few days of measurement.
All contributions entering our final result are summa-

rized in Table II. To combine all systematic corrections and
their uncertainties, we follow a basic Bayesian approach
[17]. For each clock, we derive the final mean value and its
uncertainty from the marginalized posterior including the
different systematic corrections. Orbit corrections were
modeled by a normally distributed prior, while for the
temperature and magnetic field corrections, we assumed
uniform distributions in the ranges given in Table II. The
final uncertainty we state on each clock is the equal tailed
68% interval (see Fig. 3).
Discussion.—The orbit correction derived from indepen-

dent laser ranging data significantly reduces the observed
bias for the two clocks on GSAT-0202. Further accounting
for the uncertainties due to temperature and magnetic
field variations, the results for all three clocks are even-
tually consistent with the GR prediction within approx-
imately 2σ. Then, if we take the combined posterior
for all three clocks, we are left with a posterior mean of
α ¼ ð−0.9� 1.4Þ × 10−5, which would correspond to a
fivefold improvement over GPA.
A closer look at the distributions of daily results for

clocks 1 and 3 in Fig. 2, however, reveals rather pro-
nounced slow variations of the bias. While these average
out to a certain extent in the total result, their magnitude
clearly exceeds our boundaries on daily temperature and
magnetic field effects. Also, for these clocks, we are unable
to correlate the observed variations with the orbit model
error, partially due to the low number of SLR measure-
ments per day.
For clock 5, on the other hand, we have no evidence for

an additional unaccounted systematic influence, apart from
a short “glitch” between days 767 and 773. In addition, we
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get a consistent result from daily and global SLR fits to
model the orbit correction for this clock. Thus, we consider
the above bounding approach based on existing models and
reasonable conservative assumptions to be sufficient to
reliably estimate the effects in clock 5 and decide to take
our final result from this clock only. This leaves us with
α ¼ ð2.2� 1.6Þ × 10−5, the uncertainty of which is still a
factor of 4 below that of GPA. The apparent deviation from
zero is less than 2σ and is partially attributed to the
observed glitch. Removal of these seven days changes
the result to α ¼ ð1.9� 1.6Þ × 10−5. Ongoing improve-
ments in the processing, in particular in the modeling of the
clocks, might lead to tightened results in the future.
The above analysis provides a test of the combined effect

of gravitational redshift and relativistic Doppler effect,
similar to that in the analysis of GPA given in [5] and, thus,
allows for a direct comparison to the result given there. The
relativistic Doppler effect, however, has been tested sep-
arately and at significantly better precision in other experi-
ments already [18]. If we restrict our violation model only
to the gravitational redshift part as in equation (4), we
obtain a combined result of αrs ¼ ð4.5� 3.1Þ × 10−5,
which, again, provides a fourfold reduced uncertainty as
compared to αrs < 1.4 × 10−4 as given for GPA in [19].
As data taking of the GSAT-0201 and 0202 satellites

continues, prospects for further improvements are limited

by the uncertainty in temperature and magnetic field
systematics due to the lack of sensors and telemetry.
These limitations could be overcome by direct measures
if a similar but dedicated mission was done in the future,
which could be an interesting complement to other upcom-
ing precision tests of the gravitational redshift, e.g., from
the ACES mission [20] or the RadioAstron mission [21].
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Note added in proof.—We note that in the framework of the
GREAT project another team has conducted an indepen-
dent analysis of the same data as considered in this Letter.
Their results are also published in this issue [22].
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