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We report on a new test of the gravitational redshift and thus of local position invariance, an integral part
of the Einstein equivalence principle, which is the foundation of general relativity and all metric theories
of gravitation. We use data spanning 1008 days from two satellites of Galileo, Europe’s global satellite
navigation system, which were launched in 2014, but accidentally delivered on elliptic rather than circular
orbits. The resulting modulation of the gravitational redshift of the onboard atomic clocks allows the
redshift determination with high accuracy. Additionally, specific laser ranging campaigns to the two
satellites have enabled a good estimation of systematic effects related to orbit uncertainties. Together with a
careful conservative modeling and control of other systematic effects we measure the fractional deviation of
the gravitational redshift from the prediction by general relativity to be ð0.19� 2.48Þ × 10−5 at 1 sigma,
improving the best previous test by a factor 5.6. To our knowledge, this represents the first reported
improvement on one of the longest standing results in experimental gravitation, the Gravity Probe A
hydrogen maser rocket experiment back in 1976.
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The classical theory of general relativity (GR) provides a
geometrical description of the gravitational interaction. It is
based on two fundamental principles: (i) the Einstein
equivalence principle (EEP) and (ii) the Einstein field
equations that can be derived from the Einstein-Hilbert
action. Although very successful so far, there are reasons to
think that sufficiently sensitivemeasurements could uncover
a failure of GR. For example, the unification of gravitation
with the other fundamental interactions, and quantum
theories of gravitation, generally lead to small deviations
fromGR (see, e.g., Ref. [1]).Also darkmatter and energy are
so far only observed through their gravitational effects, but
might be hints towards a modification of GR [2,3].
From a phenomenological point of view, three aspects of

the EEP can be tested: (i) the universality of free fall (UFF),
(ii) local Lorentz invariance (LLI), and (iii) local position
invariance (LPI). Constraints on UFF have been recently
improved by the Microscope space mission [4], while LLI
was recently constrained, e.g., by using a ground fiber
network of optical clocks [5] (see, e.g., Refs. [1,6,7] for
reviews). In this paper we focus on testing LPI.
LPI stipulates that the outcome of any local nongravita-

tional experiment is independent of the space-time position

of the freely falling reference frame in which it is performed.
This principle is mainly tested by two types of experiments:
(i) search for variations in the constants of nature (see, e.g.,
Refs. [8,9] for a review) and (ii) gravitational redshift tests.
The gravitational redshift was observed in a ground experi-
ment for the first time by Pound, Rebka, and Snider [10,11].
In a typical clock redshift experiment, the fractional

frequency difference z ¼ Δν=ν between two clocks located
at different positions in a static gravitational field is
measured by exchange of electromagnetic signals. The
EEP predicts z ¼ ΔU=c2 for stationary clocks, where ΔU
is the gravitational potential difference between the loca-
tions of both clocks, and c is the velocity of light in
vacuum. A simple and convenient formalism to test the
gravitational redshift is to introduce a new parameter α
defined through (see, e.g., Ref. [1])

z ¼ Δν
ν

¼ ð1þ αÞΔU
c2

; ð1Þ

with α vanishing when the EEP is valid.
So far, the most accurate test of the gravitational redshift

has been realized with the Vessot-Levine rocket experiment
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in 1976, also named the Gravity Probe A (GP-A) experi-
ment [12–14]. The frequency differences between a space-
borne hydrogen maser clock and ground hydrogen masers
were measured thanks to a continuous two-way microwave
link. The total duration of the experiment was limited to 2 h
constrained to the parabolic trajectory of the GP-A rocket,
and reached an uncertainty of jαj ≤ 1.4 × 10−4 [14]. The
future Atomic Clock Ensemble in Space (ACES) experi-
ment [15,16], an ESA-CNES mission, planned to fly on the
ISS in 2020, will test the gravitational redshift to around
jαj ≤ 3 × 10−6. Furthermore, other projects like Space-
Time Explorer and Quantum Equivalence Principle
Space Test propose to test the gravitational redshift at
the level of 10−7 [17]. Finally, observations with the
RadioAstron telescope are hoping to reach an uncertainty
of the order of 10−5 [18].
In this Letter, following the proposal in Ref. [19], we use

the onboard atomic clocks of the Galileo satellites 5 and 6
(namedDoresa andMilena, or GSAT0201 and GSAT0202)
to search for violations of the EEP-LPI. These two satellites
were launched together on a Soyuz Rocket on August 22,
2014 and because of a technical problem on the launcher’s
upper stage, they were placed in a nonnominal elliptic orbit.
Although the satellites’ orbits were adjusted after the
launch, they remain elliptical, with each satellite climbing
and falling some 8500 km twice per day. The elliptic orbit
induces a periodic modulation of the gravitational redshift
at orbital period (around 13 h), while the good stability of
recent GNSS clocks allows us to test this periodic modu-
lation to a new level of uncertainty. The Galileo 5 and 6
satellites, with their large eccentricity (e ¼ 0.162) and
onboard passive hydrogen-maser (PHM) clocks, are hence
perfect candidates to perform this test. Contrary to the
GP-A experiment, it is possible to integrate the signal
over a long duration, therefore improving the statistics.
Moreover, satellite laser ranging (SLR) data are used
for a characterization of systematic effects. A specific
international laser ranging service (ILRS) campaign took
place during the years 2016–2017 [20].

The flowchart of the data analysis is given in Fig. 1. We
use an orbit and clock solution generated by ESA’s
Navigation Support Office, located at the European
Space Operations Centre (ESOC). The details of the
ESOC processing strategy are given in the Supplemental
Material [21]. The satellite orbit solution contains positions
and velocities of multiple GNSS satellites in the terrestrial
reference frame ITRF2014 with respect to GPS time
epochs. Orbit solutions are independent of a possible
violation of the gravitational redshift (at the required
accuracy), as no assumptions or models of the clock
evolution, are made. Instead the clock solutions are
obtained as a free parameter for each epoch.
The satellite orbits and time epochs are calculated in the

Geocentric Celestial Reference System (GCRS) thanks to
the Standards of Fundamental Astronomy (SOFA) routines
[35]. Then, we calculate the theoretical proper time of the
onboard clock τGR—predicted by GR—by integrating the
coordinate time to proper time transformation:

τGR ¼
Z

dτ
dt

dt ¼
Z �

1 −
v2

2c2
−
UE þUT

c2

�
dt; ð2Þ

where τ and t are the proper time and the coordinate
time (geocentric coordinate time TCG) of the clock,
respectively, c is the velocity of light in vacuum, and v
is the velocity of the clock in the GCRS. Also, UE is the
Newtonian gravitational potential of the Earth at the
location of the satellite

UE ¼ GM
r

þ GMR2
0J2

2r3
ð1 − 3 cos2 θÞ; ð3Þ

where G is the gravitational constant,M, R0, and J2 are the
mass, the equatorial radius, and the zonal coefficient of
order 2 of Earth, respectively, and r and θ are the distance
from the center of Earth and the colatitude of the satellite,
respectively. UT is the tidal potential due to external
bodies [36],

FIG. 1. Data analysis flowchart: as input we use ESOC orbit
and clock solution files, SLR residuals, as well as clock on-
ground characterization. The evaluation of systematics is com-
pletely independent from the clock measurements.

FIG. 2. Raw clock bias τESOC, as read in the ESOC clock
solution file.
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UT ¼
X
A

GMA

�
1

jr − rAj
−

1

jrAj
−
r · rA
jrAj3

�
; ð4Þ

where MA is the mass of external body A, and r and rA are,
respectively, the position vectors of the satellite and
external body A in the geocentric frame. We take into
account the Moon and Sun, while other bodies can be
neglected.
The main gravitational effect is the sum of a linear and a

periodic term, which amounts to 400 ns peak to peak (see
Fig. 4). Earth’s flatness leads to a 40 ps peak-to-peak
periodic effect at twice the orbital frequency. Tidal effects
from the Moon and the Sun lead to a periodic signal of
around 12 ps peak to peak, higher than the uncertainty goal
of the experiment.
The deviation of the proper time from the GR prediction,

τLPI, is quantified by the LPI violation parameter α as given
in Eq. (1) and proportional to the gravitational part of the
coordinate to proper time transformation:

τLPI ¼ −α
Z

UE þ UT

c2
dt: ð5Þ

The raw clock bias τESOC from the ESOC clock solution
is shown in Fig. 2 for satellites GSAT0201 and GSAT0202,
with respect to a daily reference clock on the ground. A
large drift of the order of 34 μs d−1 is present most of the
time. The linear part of the relativistic redshift between the
Galileo clocks and a ground clock is ≈ 40 μs d−1 assuming
a nominal 10.23MHz frequency. However, each PHM
clock is also affected by an intentional frequency offset
(≈−6 μs d−1) to this nominal frequency which explains
the observed drift. Additionally, after each activation the
clock retraces to the nominal frequency with an accuracy
not better than �0.18 μs d−1. We remove this unknown
frequency offset (together with the known 34 μs d−1) by
removing from the clock bias a daily linear fit (DLF), which
can be written in the form

τDLF ¼
XN
i¼1

fiðtÞðai þ bitÞ; ð6Þ

where N is the number of days in the data, ai and bi are the
clock offset and linear drift for day i, respectively, and fiðtÞ
is equal to 1 for day i, and 0 otherwise. The clock bias
residuals for the times chosen in the analysis are shown
in Fig. 3.
The master clock on board the Galileo satellites may

change over time due to maintenance routine. There are two
PHM clocks as well as two rubidium clocks (RAFS) on
board each of the satellites. In Table I we show the dates of
each master clock as well as the standard deviation of the
corresponding clock residuals. We exclude from the analy-
sis data from PHM-A of GSAT0201 and from RAFS of
GSAT0202, because of the higher standard deviation of
their residuals. Obvious outliers at typically more than 10σ
are removed, which represents around 7.7% and 4.3% of
the total data for GSAT0201 and GSAT0202, respectively.
Finally, our data analysis contains 359 days of data from
GSAT0201 and 649 days of data from GSAT0202, span-
ning from January 2015 to December 2017. The raw clock
bias τESOC is corrected to account for the full GR prediction
given in Eq. (2), giving the corrected clock bias τcorr. This is
explained in detail in the Supplemental Material [21].
The data analysis is done in three steps. First, we fit a

model for the stochastic noise to the corrected clock bias
residuals. In a second step, we fit the model defined from
Eqs. (5) and (6) to the corrected clock bias by using a
Monte Carlo approach, using the stochastic noise model
estimated in the first step. This gives us the fitted value for α
as well as an estimation of its statistical uncertainty. In a
third step, we estimate the systematic uncertainty by
considering the main sources of systematics: effects of
magnetic field, of temperature, and mismodeling of the
orbital motion of the satellites.
The stochastic noise of the clock bias is modeled as a

sum of white frequency and flicker phase noise [in the time
domain that corresponds to power spectral density (PSD)
with f−2 and f−1 slopes, respectively], with the amplitudes

FIG. 3. Clock bias pre-fit residuals are obtained by removing
from the raw clock bias τESOC a daily linear fit. Here only the
times taken into account in the analysis are shown.

TABLE I. Master clock on board each eccentric satellite with
dates and corresponding standard deviation of the clock bias
prefit residuals. In bold are the chosen clocks for the gravitational
redshift test.

Satellite Clock Start Stop
Clock residuals
stand. dev. (ns)

GSAT0201 PHM-Ba 11/29/14 06/25/16 0.16
PHM-A 06/26/16 12/16/2017 0.69

GSAT0202 PHM-B 03/17/15 11/03/15 0.20
RAFS 11/04/15 07/01/16 2.21
PHM-Ab 07/02/16 12/16/2017 0.11

aGSAT0201 PHM-B was interrupted for 4 days as a master clock
in favor of RAFS-B on 12/04/14. These data were removed.
bGSAT0202 PHM-A was interrupted for 13 days as a master
clock in favor of RAFS-B on 10/30/16. These data were removed.
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given by a fit to the PSD of the clock bias residuals. The
PSD is calculated thanks to the Lomb-Scargle algorithm
[37,38], which takes into account data gaps. Typical
PSD noise levels are 3 × 10−25 s2Hz−1 × ðf=f0Þ−2 and
1 × 10−21 s2Hz−1 × ðf=f0Þ−1, where f0 ¼ 1 Hz. As dis-
cussed in Ref. [19] the clocks are also subject to flicker
frequency noise at low frequencies (typically ≤ 1 d−1),
which (anyway) plays no role in our analysis because it is
absorbed by the daily linear fit τDLF given in Eq. (6).
As the noise from the clock bias is mostly composed

by random walk noise, it is not possible to use a simple
linear least-square approach which assumes white noise,
and would lead to a strong underestimation of the para-
meter uncertainties by 1 or more orders of magnitude.
Therefore a Monte Carlo linear least-square (MC LLS)
approach is used. The LLS minimizes the quantity SðpÞ ¼
½y − fðpÞ�⊤½y − fðpÞ�, where p is the set of parameters, y
is the observation vector, and fðpÞ is the model estimated at
p (see, e.g., Chap. 15.6 of Ref. [39]). In our case, y ¼ τcorr,
fðpÞ ¼ τLPI þ τDLF, and p≡ fα; ai; big, which are the
same parameters as defined in Eqs. (5) and (6).
Moreover, the two clocks from GSAT0202 are weighted
following their respective clock residuals standard devia-
tions given in Table I. This provides our estimates of the
parameters p. Then we determine the statistical uncertain-
ties of the parameters with the MC routine: we generate
1000 independent noise series mimicking our data, and fit
the same model fðpÞ to each of them, as to the data. This
provides 1000 sets of the parameters p, coming only from
the modeled stochastic noise. The standard deviation of the
obtained parameter values give their statistical uncertainty
at 1σ.

We report the results of the MC LLS, i.e., the value of
the LPI violation parameter α and its statistical uncertainty,
in Table II. We obtain α ¼ ð−0.77� 1.48Þ × 10−5 and
α ¼ ð6.75� 1.41Þ × 10−5 for satellites GSAT0201 and
GSAT0202, respectively. The value of α for GSAT0202
is 5 times its uncertainty at 1σ, and therefore significant.
A careful analysis of systematic effects is discussed in the
Supplemental Material to explain this value [21]. We
compared the MC LLS approach to a general least-square
(GLS) approach for GSAT0201, where we take into
account the full noise covariance matrix on a day by
day basis. The value of α found with GLS is still consistent
with a null value within the 1σ uncertainty, and the
uncertainty found with GLS is 20% smaller. However,
the GLS approach neglects long term (across day bounda-
ries) correlations and we consider the MC LLS uncertainty
value to be more conservative.
The main likely systematic effects were identified in

Ref. [19]. Effects acting on the frequency of the reference
ground clock, as well as effects acting on the radio link
can be safely neglected, as explained in Ref. [19]. We will
assess effects acting directly on the frequency of the
onboard clock, namely, temperature and magnetic field
variations, as well as systematic effects coming from orbit
modeling errors, which are strongly correlated to the clock
solution in the case of a one-way time transfer (see, e.g.,
Refs. [22,23]). During this experiment, no additional
environmental data (onboard magnetic field or temper-
ature) were available. Therefore, we will only evaluate an
upper limit of the systematic effects rather than trying to
correct them. In doing so we do not use the clock data itself,
so our limits are independent of a putative violation of the
gravitational redshift.
A detailed description of the systematic effect analysis

is given in the Supplemental Material [21]. Here we
summarize the main results. The magnetic field vector is
calculated along the trajectory of each satellite, and
projected onto each axis of the PHM clock. The sensitivity
of the clock to the magnetic field, as determined in ground
tests, then translates the modeled magnetic field variations
along each axis of the clock into a variation of the fractional
frequency of the clock. The model fðpÞ ¼ τLPI þ τDLF is
then fitted to this variation to obtain the highest possible
value of α due to this effect. Our approach is conservative
as we do not assume any shielding from the satellite or the
clock. The result is reported in Table II in the magnetic field
uncertainty column. A similar approach is used to estimate
the highest possible value of α due to temperature varia-
tions, acting both directly on the clock and on the rest of the
payload. We assume that temperature variations of the
clock are due to the change of the orientation of the satellite
with respect to the Sun, and take their amplitude as the
highest peak-to-peak variation allowed by the thermal
control system, which is a very conservative assumption
as explained in the Supplemental Material [21]. The result

FIG. 4. GR prediction, clock data (after removal of a daily
linear fit) and residuals are shown for 2 days from March 31,
2016. The peak-to-peak effect is around 0.4 μs, therefore the
model and systematic effects at orbital period should be con-
trolled down to 4 ps in order to have a 1 × 10−5 uncertainty on the
LPI violation parameter α.
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is reported in Table II in the temperature uncertainty
column. Finally, we estimate uncertainties due to orbit
modeling errors thanks to SLR data. Indeed, SLR residuals
have been shown to be highly correlated to the clock bias,
as it is expected in a one-way time transfer [22,23]. We fit
the same model fðpÞ ¼ τLPI þ τDLF to the (scaled) SLR
residuals in order to get the highest value of α due to orbit
modeling errors. The result is reported in Table II in the
orbit uncertainty column.
When we quadratically add the statistical and systematic

uncertainties due to each considered error source, we obtain
for the LPI violation parameter α ¼ ð−0.77� 2.73Þ × 10−5

for GSAT0201 and α¼ð6.75�5.62Þ×10−5 for GSAT0202
(see Table II).
Finally, we combine the data from both satellites using

a global MC LLS analysis, where the only parameter
common to both satellites is the LPI violation parameter α.
The relative weight of both satellites in the MC LLS is
chosen following their orbit uncertainty in Table II. The
uncertainties coming from systematics are evaluated in
the same way as for each satellite alone, except that we
combine the modeled clock variations due to systematics
from both satellites in the fit, with the same weight as for
the clock biases. The results are reported in Table II.
To conclude, by analysing 1008 days of data from

the two eccentric Galileo satellites, GSAT0201 and
GSAT0202, and through a careful analysis of systematic
effects, we were able to improve the gravitional redshift
test done by GP-A in 1976 by a factor 5.6, down to
α ¼ ð0.19� 2.48Þ × 10−5. Our result is at the lower edge
of the predicted sensitivity in Ref. [19]. This is due to the
very favorable configuration of GSAT0201 with respect to
the orbit systematics on the clock bias, which is almost 90°
out of phase with the LPI violation signal. At this point, the
main residual limiting factor is the uncertainty due to the
magnetic field variations, which cannot be overcome
without more information about the clock sensitivity
(e.g., directional dependence) and the actual local magnetic
field after, e.g., shielding from the satellite itself. A
refinement of the magnetic field characterization of the
PHM per axis could be performed to improve the magnetic
field contribution uncertainty and reduce further the LPI

overall total uncertainty. In any case, we can see that the
three main uncertainties, i.e., statistical, orbit, and magnetic
field, are of the same order. Therefore, envisaging a
potential future mission of the same type, it would be of
interest to improve these three aspects of the experiment: a
more stable clock to have better statistics, a careful
shielding, modeling, or measurement of the magnetic field,
and a careful modeling or measurement of nongravitational
accelerations. Also increasing the signal (higher ellipticity,
lower perigee) would improve the test significantly (see,
e.g., the STE-QUEST proposal [17]). Finally, a two-way
link would strongly reduce the effect of orbit determination
uncertainties (see, e.g., the ACES proposal [15,16]).
Part of the data used in this Letter will be published by

ESA on the ESA GNSS Science Server [40].
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