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The problem of estimating multiple loss parameters of an optical system using the most general ancilla-
assisted parallel strategy is solved under energy constraints. An upper bound on the quantum Fisher
information matrix is derived assuming that the environment modes involved in the loss interaction can be
accessed. Any pure-state probe that is number diagonal in the modes interacting with the loss elements is
shown to exactly achieve this upper bound even if the environment modes are inaccessible, as is usually the
case in practice. We explain this surprising phenomenon, and show that measuring the Schmidt bases of the
probe is a parameter-independent optimal measurement. Our results imply that multiple copies of two-mode
squeezed vacuum probes with an arbitrarily small nonzero degree of squeezing, or probes prepared using
single-photon states and linear optics, can achieve quantum-optimal performance in conjunction with on-off
detection. We also calculate explicitly the energy-constrained Bures distance between any two product loss
channels.Our results are relevant to standoff image sensing, biological imaging, absorption spectroscopy, and
photodetector calibration.
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Quantum metrology investigates the fundamental limits
imposed by quantum mechanics on the precision of
measurements under resource constraints. It encompasses
the measurement of such physical quantities as displace-
ment, time, force, acceleration, temperature, and electric
and magnetic fields in diverse physical systems including
atoms, ions, and spins [1,2]. In optical systems, measuring
interferometric phase shifts has been the paradigmatic
example for which quantum enhancement has been most
studied [3,4].
Beyond unitary dynamics, the most ubiquitous phe-

nomenon present in optical systems is loss, the precise
measurement of which is a fundamental issue in science
and technology. A general loss sensing scenario is depicted
schematically in Fig. 1. K loss elements modeled as beam
splitters are probed using a multimode probe of which the
“signal” modes (shown in red) are directly modulated by
the loss elements while the “ancilla” modes (shown in
yellow) are held losslessly. The exact nature of the modes
and loss elements need not be specified for our analysis,
which applies to diverse scenarios. Thus the K loss
elements may be actual pixels in an amplitude mask in
an image sensing scenario [5], or may represent absorption
coefficients of a sample at K different frequencies in an
absorption spectroscopy setup [6], or a photodetector
whose quantum efficiency is being calibrated [7]. The K
probes may also represent temporal modes probing the
transmittance of a living cell undergoing a cellular process
[8]. More abstractly, many natural imaging problems can be
mapped to equivalent transmittance estimation or

discrimination problems [9,10]. At optical frequencies,
we may assume that the environment modes entering the
“unused” input ports of the beam splitters are in the vacuum

FIG. 1. General ancilla-assisted parallel strategy for loss sens-
ing: a joint probe state of the signal (red) and ancilla (yellow)
modes A is prepared. Each signal mode queries one of K beam
splitters with unknown transmittances η ¼ ðη1;…; ηKÞ. The
output signal modes and ancilla modes are jointly measured to
yield an estimate η̌ of η. The input environment modes (green)
entering the beam splitters are in the vacuum state, the output
environment modes are inaccessible, and multiple signal modes
(not shown) may query each beam splitter.
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state. The output environment modes are typically inac-
cessible for measurement, so only the signal and ancilla
modes are measured using an optimal quantum measure-
ment in order to estimate the transmissivity values. In order
to make the problem well defined, we constrain the energy
[11] allocated to the signal modes. Apart from accounting
for resources, it is often necessary to limit the photon flux
through an optical element, e.g., to avoid damage or
alteration of processes in live tissue [12], to calibrate
sensitive single-photon detectors [7], or for covertness.
In this Letter, we solve the problem of quantum-optimal

estimation of K real-valued transmissivities f ffiffiffi
η

p
kgKk¼1

using the general ancilla-assisted entangled parallel strat-
egy of Fig. 1, assuming that the energy allocated to the
signal modes probing each of the K beam splitters is
specified as fNkgKk¼1. We first obtain an upper bound on the
quantum Fisher information matrix for the problem, and
then show that a very large class of probe states achieves
this bound. We find the optimal quantum measurement and
exhibit readily prepared probes for which on-off detection
is an optimal measurement. Finally, we address the problem
of discriminating between two given loss channels by
deriving the probe state of given signal energy that
minimizes the fidelity at the channel output.
Problem formulation and estimation theory review.—

The action of the kth beam splitter on the mth signal mode
annihilation operator âðmÞ and the mth environment mode
annihilation operator êðmÞ takes the form

âðmÞ
out ¼

ffiffiffiffiffi
ηk

p
âðmÞ
in þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηk

p
êðmÞ
in ;

êðmÞ
out ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηk

p
âðmÞ
in −

ffiffiffiffiffi
ηk

p
êðmÞ
in ð1Þ

in the Heisenberg picture, where 1 ≤ m ≤ M ≡P
K
k¼1Mk,

withMk being the total number of signal modes probing the
kth loss element. In the Schrödinger picture, this evolution
is generated by the unitary operator

ÛðmÞðϕkÞ ¼ exp½−iϕkðâðmÞ†êðmÞ þ âðmÞêðmÞ†Þ�; ð2Þ

where the “angle” parameter ϕk ∈ ½0; π=2� satisfies
cosϕk ¼ ffiffiffiffiffi

ηk
p

. For an initial vacuum environment state,
the evolution defines a quantum channel Lηk on the signal
mode that maps an input state ρ to the output state LηkðρÞ
with Wigner characteristic function

χoutðξÞ ¼ χinð
ffiffiffi
η

p
kξÞe−ð1−ηkÞjξj

2=2 for ξ ∈ C; ð3Þ

where χinðξÞ ¼ Trρeξâ
ðmÞ†
in −ξ�âðmÞ

in is the characteristic func-
tion of ρ.
Without loss of generality, we assume that the signal ðSÞ

and ancilla ðAÞ modes are in a joint pure state jψi (viz., the
probe) satisfying the energy constraints hψ jN̂kjψi ¼ Nk for
k ¼ 1;…; K, where N̂k ¼

P
Mkmodesâ

ðmÞ†âðmÞ is the total

photon number operator of the signal modes probing the
kth loss element. Including the environment (E) modes
(initially in the multimode vacuum state j0iE) and the
ancilla modes, the output state of the total system ASE is
given by σϕ ¼ jΨϕihΨϕjASE, where

jΨϕiASE ¼ ÎA ⊗ ð⊗K
k¼1⊗

Mk
m¼1 Û

ðmÞðϕkÞÞjψiASj0iE; ð4Þ

ÎA is the identity operator on the ancilla system, and
ϕ ¼ ðϕ1;…;ϕKÞ. Since the output environment modes
are actually inaccessible, the measured output state is
ρϕ ¼ TrEσϕ.
The state family fρϕg gives rise to the corresponding

multiparameter quantum Cramér-Rao bound (QCRB)
[1,13,14]. Briefly, for each parameter ϕi, there exists a
Hermitian operator L̂i (which depends on ϕ in general)
called the symmetric logarithmic derivative (SLD) satisfying
∂iρϕ ≡ ∂ρϕ=∂ϕi ¼ ðρϕL̂i þ L̂iρϕÞ=2. The quantum Fisher
information matrix (QFIM)K is the K × K matrix with ijth
matrix element given by Kij ¼ TrρϕðL̂iL̂j þ L̂jL̂iÞ=2.
Consider any measurement applied to the output modes
resulting in an estimate vector ϕ̌ ¼ ðϕ̌1;…; ϕ̌KÞ for ϕ. The
error covariance matrix Σ of the estimate has the matrix
elements Σij ¼ E½ðϕ̌i − ϕiÞðϕ̌j − ϕjÞ�, where E denotes
statistical expectation over the measurement results. For
an unbiased estimate, i.e., if E½ϕ̌i� ¼ ϕi for all ϕ and i, the
QCRB is the matrix inequality Σ ≥ K−1. For any K × K
positive semidefinite cost matrix G, the QCRB implies that
the scalar cost trGΣ ≥ trGK−1 for any unbiased estimator ϕ̌
[15]. The SLD operators in terms of the transmittance
parametrization η ¼ ðη1;…; ηKÞ are related to those of the

angle parametrization via L̂ðηÞ
k ¼ ð∂ϕk=∂ηkÞL̂k and result in

a different QFIM and QCRB. We will indicate which
parametrization is being used by a subscript or superscript
where necessary.
The estimation of a single loss parameter has been

studied before [16–22] (see Ref. [2] for a review), but
not in the generality considered here. Thus, Ref. [16]
focused on measurement optimization, Ref. [17] focused
on specific probes and measurements, Ref. [18] studied
single-mode Gaussian-state probes, while Ref. [19] con-
sidered optimizing the state of a single-signal-mode probe.
References [20,21] studied ancilla-assisted schemes using
Gaussian probes, while Ref. [22] studied the joint estima-
tion of loss and phase using a single signal-ancilla mode
pair. Thus, none of these works addressed the general
multimode ancilla-assisted parallel strategy for multipara-
meter loss estimation.
Upper bound on the QFIM.—We first obtain an

upper bound (in the matrix-inequality sense) on the
QFIM for estimating ϕ, extending the approach of
Monras and Paris [18] for the single-parameter case.

Suppose that the output environment modes fêðmÞ
out gMm¼1
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are accessible. From Eq. (4), the purified output state

σϕ¼e−i
P

k
ϕkĤkσei

P
k
ϕkĤk for σ ¼ jψihψ jAS ⊗ j0ih0jE

and Ĥk¼ÎA⊗ðPMk
m¼1â

ðmÞ†êðmÞþâðmÞêðmÞ†Þ. Since σϕ is
pure, differentiating σ2ϕ ¼ σϕ implies that an SLD operator

l̂k for ϕk is l̂k ¼ 2∂kσϕ ¼ 2i½σϕ; Ĥk�. A direct calculation
of the ijth matrix element of the QFIM K̃ij ¼
Trσϕðl̂il̂j þ l̂jl̂iÞ=2 (the tilde denotes that this matrix is
calculated assuming access to the environment modes) gives
K̃ij ¼ 4hψ jðPMk

m¼1 â
ðmÞ†âðmÞÞjψiδij ¼ 4Niδij, where Ni is

the total energy of jψi in the signal modes probing the ith
beam splitter. The monotonicity of the QFIM [23] under
partial trace over E implies that the true QFIM matrix Kϕ

satisfies

Kϕ ≤ K̃ϕ ¼ 4 diagðN1;…; NKÞ: ð5Þ
Note that this bound is valid for any probe statewith thegiven
signal energy distribution and is independent of the values of
fMkgKk¼1.We refer to Eq. (5) as the generalizedMonras-Paris
(MP) limit.
The performance of NDS probes.—We now exhibit

probes saturating the limit [Eq. (5)]. Consider first the
case of a single beam splitter probed by a pure joint signal-
ancilla state jψi with M signal modes. It is easily seen that
any such jψi can be written as

jψi ¼
X
n≥0

ffiffiffiffi
p

p
nj χniAjniS; ð6Þ

where jniS ¼ jn1iS1 jn2iS2 � � � jnMiSM is an M-mode num-
ber state of S, fj χniAg are normalized (not necessarily
orthogonal) states of A, and pn is the probability distribu-
tion of n. The energy constraint takes the form

X∞
n¼0

npn ¼ N; for pn ¼
X

n∶n1þ���þnM¼n

pn; ð7Þ

which is the probability mass function of the total photon
number in the signal modes. For any transmittance value
ηðϕÞ, we can write the output state [Eq. (4)] explicitly as

jΨϕiASE ¼
X
l≥0

jψϕ;l⟫ASjliE; ð8Þ

where

jψϕ;l⟫AS ¼
X
n≥l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pnBηðn; lÞ

q
j χniAjn − liS ð9Þ

are unnormalized states of AS, Bηðn; lÞ ¼ ΠM
m¼1ðnmlm Þηnm−lm×

ð1 − ηÞlm is a product of binomial probabilities, andn ≥ l is to
be understood componentwise. Since ⟪ψϕ;ljψϕ0;l⟫ ≥ 0, the
fidelity between the purified output states corresponding to a
pair of values ηðϕÞ and η0ðϕ0Þ equals

Fðσϕ; σϕ0 Þ≡ Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σϕ

p
σϕ0

ffiffiffiffiffi
σϕ

pq
¼

X
l≥0

⟪ψϕ;ljψϕ0;l⟫: ð10Þ

The reduced state of the AS system is given by
ρϕ ¼ TrEσϕ ¼ P

ljψϕ;l⟫⟪ψϕ;lj. Probes jψi for which the
fj χniAg are orthonormal are called number diagonal signal
(NDS) states [24,25] since the reduced state on S is then
number diagonal. For such probes, we have ⟪ψϕ;ljψϕ0;l0⟫ ¼
⟪ψϕ;ljψϕ0;l⟫δl;l0 from Eq. (9), and the output fidelity evaluates
to (see also Ref. [24] for the latter equality)

Fðρϕ; ρϕ0 Þ ¼
X
l≥0

⟪ψϕ;ljψϕ0;l⟫ ¼
X∞
n¼0

pnμ
n; ð11Þ

where μ¼
ffiffiffiffiffiffi
ηη0

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1− ηÞð1− η0Þp ¼ cosðϕ0 −ϕÞ∈ ½0;1�.

Significantly, the middle expression equals the fidelity
[Eq. (10)] between the output states on ASE. The QFI can
now be calculated as

Kϕ ¼ −4∂2Fðρϕ; ρϕ0 Þ=∂ϕ02jϕ0¼ϕ ¼ 4N; ð12Þ

where the first equality is ageneral relationbetween fidelity and
QFI [26], and the latter follows from Eq. (11). We have thus
shown that for NDS probes, the QFI with or without
environmental access is equal to the MP limit for all values
of ϕ, N, and M.
For M ¼ 1 and integer N, taking pN ¼ 1 in Eq. (6)

recovers the number-state optimality result of Ref. [19].
However, for noninteger N and in particular for N < 1, the
unentangled states proposed in Ref. [19] are suboptimal if
ancilla entanglement is allowed. The two-mode squeezed
vacuum (TMSV) state is an NDS probe and its QFI was
computed by different techniques [21], although its opti-
mality was not pointed out. Our result implies that these are
just two examples among an infinity of optimal probes.
For the multiparameter case ϕ ¼ ðϕ1;…;ϕKÞ with the

given energy budget fNkg, consider the product probe state
⊗K

k¼1 ρ
ðkÞ for ρðkÞ ¼ jψ ðkÞihψ ðkÞjwith jψ ðkÞi any NDS probe

of signal energy Nk. For the resulting output state family

fρϕ ¼⊗K
k¼1 ρ

ðkÞ
ϕk
g, it is readily seen that the kth SLD

operator Λ̂k ¼ Î ⊗ � � � ⊗ L̂k ⊗ � � � ⊗ Î for L̂k satisfying

∂kρ
ðkÞ
ϕk

¼ ðL̂kρ
ðkÞ
ϕk

þ ρðkÞϕk
L̂kÞ=2. The SLDs are commuting

and the ijth element of the QFIM is this:

ðKϕÞij ¼ TrρϕΛ̂iΛ̂j ¼ 4Niδij; ð13Þ

where we have used TrρðkÞϕk
L̂k ¼ 0 for all k and the single-

parameter result TrρðkÞϕk
L̂2
k ¼ 4Nk. Thus, the product probe

⊗K
k¼1 ρ

ðkÞ achieves the generalized MP limit (5). Since the
SLDs commute and the QFIM is diagonal, there is no
obstacle to the simultaneous achievement of the QCR
bounds for the parameters [13,27].
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In the transmittance parametrization, the optimal QFIM
is given byKη¼diagf½N1=η1ð1−η1Þ�;���;½NK=ηKð1−ηKÞ�g.
In comparison, the QFIM for a product coherent-state
input with the given energies is KCS

η ¼ diagðN1=η1;
� � � ; NK=ηKÞ so that a large advantage is available if
ηk ≃ 1.
Optimal measurement and practical probes.—For any

state family fρϕg, measuring the basis corresponding
to the SLD achieves the QFI [26], but this basis may be
parameter dependent and thus of limited use [28]. For a
single loss parameter and an NDS probe of the form
[Eq. (6)], consider jointly measuring at the output its
Schmidt bases, i.e., the basis fj χniAg on A and the number
basis fjniSg on S. Such a measurement yields a pair
ðN;QÞ, where N denotes the index of the measured
j χniA and Q ¼ N −L is the measured photon number
in S. The classical Fisher information on η of this
measurement is

J η¼
X
n

pn

X
l≤n

Bηðn; lÞ
�∂ lnBηðn; lÞ

∂η
�

2

¼ N
ηð1−ηÞ ; ð14Þ

so that the QFI is attained for any η.
In many sensing scenarios, the values of fMkgKk¼1 are not

fixed beforehand but can be varied (e.g., by using multiple
temporal or spatial modes). This flexibility allows the design
of practical probes and measurements. Thus, the NDS probe

jψNi¼ j1iS1 ⊗ � � �⊗ j1iSbNc

⊗ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−fNg

p
j1iAj0iS⌈N⌉

þ
ffiffiffiffiffiffiffiffiffi
fNg

p
j0iAj1iS⌈N⌉

Þ ð15Þ

withM ¼ ⌈N⌉ signalmodes is optimal for estimating a single
loss parameter and can be prepared using single-photon
sources and linear optics. Here fNg ¼ N − bNc is the
fractional part of N. The optimal measurement described
above reduces to on-off detection in each of the S and A
modes, making the overall scheme realizable with single-
photon technologies [29]. Similarly, using M copies of a
TMSV state (which is also NDS) with each component

having signal energy N=M attains the MP limit with an
arbitrarily small level of squeezing per mode in the limit of
large M. In the limit of small squeezing, on-off detection in
everymode again becomes a quantum-optimal measurement.
Energy-constrained Bures distance between loss chan-

nels.—Consider the ancilla-assisted channel discrimination
problem shown in Fig. 2 in which a probe of a given number
M of signal modes and total energy N entangled with an
ancilla A queries a beam splitter in order to determine which
of two possible values of transmissivity (angle)

ffiffiffi
η

p ðϕÞ andffiffiffiffi
η0

p
ðϕ0Þ it possesses. This problem arises naturally in the

quantum reading of a digital optical memory [30] where the
loss channels represent bit values. Several measures of
general channel distinguishability under an energy constraint
have beenproposed recently, e.g., twoversions of the energy-
constrained diamond distance [31–34], the energy-con-
strained Bures (ECB) distance [35], and general energy-
constrained channel divergences [36]. The ECB distance
between anybosonic channelsM andN on the signalmodes
S is given by the expression [37]:

BNðM;N Þ ≔ sup
jψi∶hψ jÎA⊗N̂Sjψi¼N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F(id ⊗ Mðjψihψ jÞ; id ⊗ N ðjψihψ jÞ)

q
; ð16Þ

where F is the fidelity, A is an arbitrary ancilla system, id is
the identity channel on A, jψi is a probe of the form
[Eq. (6)], N̂S is the total photon number operator on S, and
the optimization is over all pure states of AS with signal
energy N.
We now evaluate BNðL⊗M

η ;L⊗M
η0 Þ between product loss

channels of the form of Eq. (3). We first note that among
probes with given fpng, the fidelity between the outputs
of the channels is lower bounded by the NDS value

F ¼ P∞
n¼0 pnμ

n [24]. Thus, we need to minimizeP
npnμ

n under the energy constraint [Eq. (7)]. For an
arbitrary fpng satisfying the energy constraint, let A↓ ¼P

n≤bNcpn, and A↑ ¼ 1 − A↓. For N↓ ¼ A−1
↓

P
n≤bNcnpn ≤

bNc and N↑ ¼ A−1
↑

P
n≥⌈N⌉npn ≥ ⌈N⌉, we have A↓N↓þ

A↑N↑ ¼ N. Since the function x ↦ μx is convex, we have
F ¼ P

npnμ
n ≥ A↓μ

N↓ þ A↑μ
N↑ . The convexity of this

function also implies that the chord joining ðN↓; μN↓Þ

FIG. 2. Setup pertaining to the energy-constrained Bures dis-
tance between loss channels L⊗M

η and L⊗M
η0 : Each of M signal

modes (red) of a probe state jψi of Eq. (6) entangled with an
arbitrary ancilla system A (yellow) with total signal energy N
queries a beam splitter with transmissivity either

ffiffiffi
η

p
or

ffiffiffiffi
η0

p
. We

wish to minimize the fidelity between the respective output states
ρη and ρη0 of the signal-ancilla system.
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and ðN↑; μN↑Þ lies above that joining ðbNc; μbNcÞ and
ð⌈N⌉; μ⌈N⌉Þ in the interval bNc ≤ x ≤ ⌈N⌉. Since the
energy constraint can be satisfied by taking N↓ ¼ bNc;
N↑ ¼ ⌈N⌉; pbNc ¼ 1 − fNg, and p⌈N⌉ ¼ fNg [38], the
energy-constrained minimum fidelity equals:

Fmin
N ¼ ð1 − fNgÞμbNc þ fNgμ⌈N⌉: ð17Þ

The ECB distance BNðL⊗M
η ;L⊗M

η0 Þ then follows from
Eq. (16). Since the ECB distance is an increasing function
of N, it equals (up to normalization) the ECB distance
defined using an inequality constraint in Ref. [35].
The M-signal-mode NDS probe

jψECB
N i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fNg

p
j χbNciAjbNciS1 j0iS2 � � � j0iSM

þ
ffiffiffiffiffiffiffiffiffi
fNg

p
j χ⌈N⌉iAj⌈N⌉iS1 j0iS2 � � � j0iSM ð18Þ

is optimal for any orthogonal ancilla states j χbNciA and
j χ⌈N⌉iA since it has the optimal total signal photon number
distribution. Note that BNðL⊗M

η ;L⊗M
η0 Þ is independent of

M, depends on the loss values through ϕ0 − ϕ alone, and
that the above state achieves it regardless of these values.
Discussion.—Our NDS-probe optimality results imply

the optimality of the quantum imaging scheme of Ref. [5]
and of the absolute calibration method [7,39] employing
TMSV probes. For multimode TMSV probes with small
per-mode squeezing, and for the probe [Eq. (15)], the
optimality of on-off detection obviates the need for photon
counting using cryocooled detectors.
The surprising result that NDS probes attain the exact same

performance that access to the output environment modes
would give contrasts with the case of estimating Hamiltonian
shift parameters in the presence of noise, for which the
performance is strictlyworse than thenoiseless case evenwith
ancilla entanglement [40]. NDS probes are known to be
optimal in the global Bayesian approach for general lossy
image estimation problems [25]. Our results call for a more
general investigation into their optimality within the local
QFI-based approach, and for other bosonic channels. It
remains to be seen if sequential adaptive estimation strategies
[34,41–45] can yield still more quantum enhancement.
The exact expression for the ECB distance between loss

channels contrasts with the available results for unitary
channels, which are in the form of quantum-speed-limit
bounds [46]. The ECB distance gives two-sided bounds on
the energy-constrained diamond distance [47] and hence on
the error probability of quantum reading [30]. It has also
been used to quantify the fidelity of continuous-variable
quantum gates [48]. NDS probes are known to optimize
general energy-constrained channel divergences between
any two phase-covariant bosonic channels [36]. It is thus
hoped that other energy-constrained channel divergences
may be calculated using similar methods and their metro-
logical consequences be explored.
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