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We identify a class of one-dimensional spin and fermionic lattice models that display diverging spin and
charge diffusion constants, including several paradigmatic models of exactly solvable, strongly correlated
many-body dynamics such as the isotropic Heisenberg spin chains, the Fermi-Hubbard model, and the t-J
model at the integrable point. Using the hydrodynamic transport theory, we derive an analytic lower bound
on the spin and charge diffusion constants by calculating the curvature of the corresponding Drude weights
at half-filling, and demonstrate that for certain lattice models with isotropic interactions some of the
Noether charges exhibit superdiffusive transport at finite temperature and half-filling.
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Introduction.—Understanding the microscopic mecha-
nisms for the emergent macroscopic laws in many-body
systems poses a fundamental question in condensed matter
physics. Despite a long tradition, the question has mostly
been pursued by studying certain simple classical dynami-
cal systems [1], such as elastically colliding rigid objects
[2,3], whereas much less is known about strongly corre-
lated quantum dynamics.
From the theoretical viewpoint, holographic theories [4,5]

and solvable systems in one dimension play an instrumental
role in this context thanks to many powerful methods which
enable explicit analytical calculations. Exactly solvable
models display anomalous transport behavior characterized
by singular conductivities [6–18]. In contrast, very little is
known about the regular part of DC conductivities that
characterize the sub-ballistic timescales, save for a few
numerical studies typically suffering from strong finite-size
or finite-time effects [19–24]. Exactly solvable interacting
models are naturally tailored not only to tackle this problem
in a rigorous manner, but moreover permit efficient numeri-
cal simulations [22,25–30] and sometimes allow for exper-
imental realizations [31–35]. Yet, even in a very simple
interacting system, such as the integrable Heisenberg spin-
1=2 chain, the status of the spin dynamics on the sub-ballistic
scales remains unresolved despite several recent numerical
efforts; depending on the choice of parameters, the model
shows a wide range of transport phenomena, ranging from
ideal transport to diffusion and in some cases even super-
diffusion [36–41]. It is thus reasonable to regard the
Heisenberg spin-1=2 chain and other integrable models as
exactly solvable representative models for various univer-
sality classes of transport behavior exhibited by generic
many-body quantum systems.

In this Letter, we report on a class of quantum spin and
electron models which exhibit diverging spin and charge
diffusion constants in thermal equilibriumwith no charge or
spin imbalance (i.e., at half-filling), despite the absence of
ideal transport. We build on an earlier proposal of Ref. [42],
which relates diffusion constants to the corresponding
Drude weights in the vicinity of half-filled thermal states.
Here we find a reinterpretation of the diffusion bound and
optimize it in the framework of the hydrodynamic linear
transport theory developed in Refs. [43,44]. We derive an
analytic closed-form expression for the lower bound in the
limit of infinite temperatures, and evaluate it for several
paradigmatic interacting quantum lattice models.
By explicitly calculating the bound on the diffusion

constant, we show that for several models with isotropic
interactions, invariant under a continuous non-Abelian
(and possibly graded) Lie group G, that the conserved
Noether charges (e.g., spin or electron charges) belonging
to the SUð2Þ sector of the model exhibit superdiffusive
behavior in a half-filled state at any finite temperature.
As prototypical examples we will focus on the Heisenberg
spin chain and the Fermi-Hubbard chain.
Summary.—The central result of this work is an analytical

lower bound on the spin or charge diffusion constants for a
family of interacting many-body one-dimensional lattice
systems. Let Q̂ ¼ P

xq̂x denote a conservedUð1Þ charge of
themodel, with density q̂ satisfying a local conservation law
∂tq̂xðtÞ þ ∂xĵxðtÞ ¼ 0. The corresponding diffusion con-
stant is defined via the Kubo formula

DðqÞðβÞ ¼ lim
T→∞

β

χðqÞðβÞ
X

x

Z
T

0

dthĵðqÞx ðtÞĵðqÞ0 ð0Þi; ð1Þ
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where h•i is the expectation value with respect to the grand-
canonical Gibbs ensemble ϱ̂GCðβÞ≃expð−βĤþP

i2hiN̂iÞ
at inverse temperature β, with N̂i denoting the globally
conserved Uð1Þ charges of the model including Q̂,
χðiÞðβÞ ¼ ∂2fðβÞ=∂h2i , denoting the static susceptibilities,
and f is the grand-canonical free energy [45].
We shall avoid a general formulation and rather con-

centrate on two prominent interacting systems that often
play a pivotal role in the studies of strongly correlated one-
dimensional materials, the anisotropic Heisenberg spin
chain and the Fermi-Hubbard model. These exactly solv-
able systems feature stable interacting particle excitations
that undergo a completely elastic scattering. Consequently,
the thermal average of the current density generally
involves a dissipation-free component, implying a singular
dc conductivity characterized by a finite Drude weight

DðqÞðβÞ ¼ lim
T→∞

β

2T

X

x

Z
T

0

dthĵðqÞx ðtÞĵðqÞ0 ð0Þi; ð2Þ

which signals ballistic transport. Drude weights can be
efficiently computed within the hydrodynamic approach
developed in Refs. [46,47], essentially exploiting the fact
that the net effect of interparticle interactions (which are
fully accounted for by a two-body scattering amplitude) in
the thermodynamic limit manifests itself as the renormal-
ization of particles’ bare quantities in the presence of a
finite-density many-body background (e.g., a Gibbs ther-
mal state or generalized Gibbs states [48–52]), commonly
referred to as dressing (see, e.g., Refs. [53–57]). Spectra of
solvable models are parametrized in terms of particle
excitations. We label them by a discrete index A counting
over (typically infinitely many) particle types, and a
continuous rapidity variable u encoding their bare momenta
kAðuÞ and energies eAðuÞ. The dressing of a bare quantity
qA is expressible as a linear transformation qA ↦ qdrA , while
the effective velocities of propagation are obtained from the
dressed dispersion relations, veffA ¼ ∂εA=∂pA ¼ ε0A=p

0
A,

where p0
A ¼ ðk0AÞdr and εA ¼ ðe0AÞdr, with prime denoting

the rapidity derivative. In this picture, the hydrodynamic
mode decomposition of the Drude weight reads [44,57]

DðqÞðβÞ ¼ β

2

X

A

Z
duDAðuÞ½qdrA ðuÞ�2; ð3Þ

where DAðuÞ ¼ ρAðuÞ½1 − ϑAðuÞ�½veffA ðuÞ�2 is the “Drude
kernel” and qdrA ðuÞ are the dressed charges of individual
excitations with respect to an equilibrium state (defined in
Ref. [58]). Dependence on the reference equilibrium state
enters through the rapidity distributions ρAðuÞ, which are
uniquely determined by the mode occupation (filling)
functions ϑAðuÞ¼ρAðuÞ=½2πσAp0

AðuÞ� fσA ¼ sgn½k0AðuÞ�g.
Lower bound on diffusion.—In the half-filled equilib-

rium states, the spin or charge Drude weight vanishes due to

the symmetry reasons despite integrability. To characterize
transport on sub-ballistic timescales, we exploit a useful
relation between the diffusion constant and the curvature of
the Drude weight with respect to the filling parameter,
proposed in Ref. [42]. Consequentially, the relation pro-
vides a nonvanishing lower bound on diffusion, provided
the Drude weight vanishes at most quadratically as a
function of the filling parameter. This condition is satisfied
for the half-filled thermal states in the particle-hole sym-
metric lattice models considered in this Letter.
To briefly outline the idea of the lower bound, we

imagine a small gradient of the charge density imposed
across the system and subsequently measure the induced
current. The current (initially localized at the origin)
spreads only over a finite portion of the system in a finite
amount of time due to the Lieb-Robinson causality. This
means that, at finite times on the relevant sublattice, the
probability of measuring the current in the sector away
from half-filling is nonzero. In these sectors the current
grows indefinitely with time; however, the probability of
the system being away from half-filling vanishes with the
system size. The interplay of vanishing probability and
diverging conductivity permits us to obtain a lower bound
on the diffusion constant, reading as [42]

DðqÞðβÞ ≥ 1

8βχ2ðβÞvLR
∂2
hD

ðqÞðβ; hÞjh¼0; ð4Þ

where vLR ¼ maxu;A veffA ðuÞ is the Lieb-Robinson velocity.
In particular, in the high-temperature limit the bound
becomes

DðqÞð0Þ ≥ lim
β→0

18

βðd2 − 1Þ2vLR
∂2
hD

ðqÞðβ; hÞjh¼0; ð5Þ

where we assumed that the local degrees of freedom carry
charge q ∈ f− 1

2
ðd − 1Þ;…; 1

2
ðd − 1Þg.

Solving the dressing equations.—The Drude weight and
its curvature can be expressed in terms of dressed quantities
[Eq. (3)]. Given the full set of equilibrium occupation
functions ϑA, the dressing equations take the form of
coupled linear integral equations, cf. Ref. [58]. Func-
tions ϑA are determined by minimizing the free energy
as a functional of the densities ρA. This requires us to solve
a system of nonlinear integral equations, which is only
possible numerically using an iteration scheme, except in
two extreme cases corresponding to either the ground states
or the high-temperature limit. In the latter case, the
occupation functions become momentum independent
and the dressing transformation becomes an algebraic
system. For the class of rotationally symmetric solvable
spin and fermion lattice Hamiltonians considered here, the
dressing equations admit an analytic group-theoretic sol-
ution, as explained in detail in Ref. [58]. This permits us to
obtain a closed-form expression for the bound [Eq. (5)]
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(when it is finite), and rigorously establish the occurrence
of superdiffusion signalled by a divergent bound. Impo-
rtantly, since the divergence is a result of a particular
dependence on the dressed properties of particles with large
bare spin or charge, the main statement about the super-
diffusive dynamics remains valid even at finite temper-
atures. We note that in our calculations we take into account
the exact dressed dispersion relations of interacting exci-
tations, and our results cannot be accessed with alternative
approaches, such as effective field-theoretical methods
[59–62] or semiclassical approximations [63], which fail
to capture the essential contributions of the bound states.
We subsequently concentrate on the transport of global

Uð1Þ charges, such as the total magnetization Ŝz ≡P
jŜ

z
j,

and/or the total electron charge N̂e ≡ 1
2

P
j;σ¼↑;↓ĉ

†
j;σ ĉj;σ. We

consider the half-filled spin or charge sectors, where the
Drude weights vanishes as

DðqÞðβ; hÞ ¼ CðqÞðβÞ h
2

2
þ � � � for h ∼ 0; ð6Þ

and evaluate the bound [Eq. (5)]. The Drude weight
curvature reads

CðqÞðβÞ ¼ β

2

X

A

Z
duDAðuÞ∂2

h½qdrA ðuÞ�2jh¼0: ð7Þ

In exactly solvable interacting quantum lattice models
the elementary excitations which carry spin and charge
typically form bound states. Let integer s denote their “bare
charge” (or “bare mass”), i.e., the number of constituents
within a bound state; for instance, in a spin system, such as
the Heisenberg spin chain, s pertains to the number of
bound magnons in multimagnon excitations, while, in an
electron system (e.g., the Fermi-Hubbard model), s can be
the number of bound spin-full electrons that form spin
singlet states, etc. Moreover, if the Hamiltonian has a global
rotational symmetry of a (graded) Lie group G ¼
SUðNjMÞ (with scattering amplitudes being rational func-
tions of the scattering momenta), the number of distinct
bound states is infinite; i.e., s can be arbitrarily large. We
found that, for such models, the Drude weight curvature per
particle decreases at ∼1=s for a large s, yielding a
(logarithmically) divergent diffusion lower bound after
summing over all the particle types.
Anisotropic Heisenberg spin-1=2 chain.—The simplest

model that features several distinct transport regimes is the
Heisenberg XXZ spin-1=2 chain,

ĤXXZ ¼
XL

j¼1

ðŜxj Ŝxjþ1 þ Ŝyj Ŝ
y
jþ1 þ ΔŜzjŜ

z
jþ1Þ; ð8Þ

with gapless (gapped) spectrum for jΔj ≤ 1 (jΔj > 1). The
interaction anisotropy has a profound influence on the spin

transport, which is shortly summarized below. The hydro-
dynamic representation of the spin Drude weight curvature
reads

CðmÞðβÞ¼β

2

X

s≥1

Z
du
2π

ϑsð1−ϑsÞp0
s½veffs �2∂

2½mdr
s �2

∂h2
�
�
�
�
h¼0

; ð9Þ

where mdr
s ¼ ∂2h logðϑ−1s − 1Þ. Our conclusions are that,

exactly at the SUð2Þ isotropic point Δ ¼ 1, the finite-
temperature spin diffusion constant DðmÞ diverges in the
limit of half-filling h → 0. This can be inferred from the
large-s scaling of the dressed spin (magnetization), mode
occupation functions, and dressed dispersion relations,

mdr
s ðhÞ ≃

1

3
½sþ κðβÞ�2hþOðh3Þ; ð10Þ

lim
h→0

ϑsðhÞ ≃ ½sþ κðβÞ�−2; ð11Þ

lim
h→0

Z
∞

−∞
dup0

sðuÞ½veffs ðuÞ�2 ≃ 1

s3
; ð12Þ

for some (unknown) temperature-dependent function κðβÞ.
The above large-s asymptotics hold for any finite value of
β. The finite-temperature behavior [Eq. (12)] is also
confirmed numerically, see Fig. 2. In the β → 0 limit
however, relations [Eqs. (10) and (11)] have indeed become
equalities valid for all values of s ≥ 1, with κð0Þ ¼ 1.
In the gapped regime, anisotropy Δ ¼ cosh η breaks the

SUð2Þ symmetry of the interaction to Uð1Þ. In the limit of
infinite temperature and vanishing chemical potential, the
dressed spin and mode occupations functions of bound
magnons remain the same as in the isotropic case,
cf. Eqs. (10) and (11). Notice that ϑs and mdr

s become
independent of u for large s. The key difference now is that
the bare dispersion of bound magnons become η-dependent
functions. In particular, the rapidity-dependent part of
Eq. (9) scales as

Z
π=2

−π=2

du
2π

p0
sðuÞ½veffs ðuÞ�2 ≃ e−ηs; ð13Þ

i.e., is exponentially suppressed for large bound states.
Contrary to the isotropic case, exponential convergence in s
results in a finite spin diffusion lower bound [Eq. (5)].
The gapless regime jΔj < 1 is rather exceptional, with a

positive finite-temperature spin Drude weight even in the
half-filled sector [9,15,43], with a noncontinuous depend-
ence on Δ. Still, it is interesting to ask whether the sub-
ballistic corrections to spin transport are normal, diffusive,
or anomalous sub- or superdiffusive. The thermodynamic
particle content of the model in this regime is quite involved
(see Ref. [64]) and, in distinction to the gapped regime,
changes depending on the value ofΔ [43,65]. For simplicity
we restrict ourselves to discrete points Δ ¼ cos π=l, for
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integer l ≥ 3 (the Drude curvature at Δ ¼ 0 is not positive,
consistently with the vanishing diffusion constant at the free
fermionic point [66]), where the spectrum consists of l
distinct particle types. For s ¼ 1;…;l − 2, the particles
represent bound states of s magnons whose high-temper-
ature dressed spin is given by Eq. (10), which therefore
vanishes as h → 0. There is an extra (exceptional) doublet of
particles carrying finite dressed spins mdr

A ¼ l=2� κlh
(κl > 0), for A ¼ l − 1, l, charged under the nonunitary
local conservation laws found in Refs. [12,13], which are
responsible for the nonvanishing of spin Drude weight even
at half-filling [43]. A finite contribution to the curvature CðmÞ

is obtained by subtracting a finite Drude weight DðmÞ ¼
P

A¼l−1;l
R
duρAðuÞ½1−ϑAðuÞ�½veffA ðuÞl=2�2 and expand-

ing the remainder to the second order in h. We find a finite
lower bound for all l < ∞, which diverges as l → ∞,
namely Δ → 1−, as shown in Fig. 1. [67].
Fermi-Hubbard model.—Another class of models of

particular importance are lattice models of fermions, the
most prominent example being the one-dimensional Fermi-
Hubbard model describing spin-full electrons interacting
via Coulomb repulsion,

ĤH ¼ −
XL

j¼1

X

σ∈↑;↓
ĉ†j;σ ĉjþ1;σ þ ĉ†jþ1;σ ĉj;σ þ 4u

XL

j¼1

V̂H
j ;

ð14Þ

with V̂H
j ¼ P

L
j¼1 ðn̂j;↑ − 1

2
Þðn̂j;↓ − 1

2
Þ. The spin and charge

excitations both participate in the formation of bound states.
The particle content consists of individual spin-up electrons,
spin-singlet compounds of 2a electrons with (a ∈ N) and
chargeless bound states of s spin excitations with bare spin
(s ∈ N). Although spin and charge degrees of freedom
mutually interact and undergo a nontrivial dressing, the
transport of both spin and charge are in qualitative agreement
with the isotropicHeisenberg chain: in the vicinity of the half-
filled regimeh → 0whereDðmÞðβÞ vanishes, the dressed spin
and thermal occupation functions scale with s as mdr

s ðhÞ ∼
hs2 and limh→0ϑsðhÞ ∼ s−2, respectively,with nodependence
on charge chemical potential μ associated to the conservation
of the number of electrons. An analogous reasoning applies
for the transport of electron charge, see Ref. [58] for further
details. Numerical evaluation shows that the momentum-
dependent part ofDA for the spin-carrying bound states once
again scales as in Eq. (11), implying a (logarithmically in s)
diverging spin diffusion bound [Eq. (5)].
Higher spins and higher rank symmetries.—We have

additionally solved the dressing equations for a family of
integrable spin-S isotropic Heisenberg chains, and for the
higher-rank SUðNÞ-symmetric lattice models that comprise
N − 1 species of interacting excitations. The picture,
exemplified above for the isotropic S ¼ 1=2 Heisenberg
model (N ¼ 2), is qualitatively unchanged. By virtue of
SUðNÞ invariance however, the statement now holds for all
the components of the Noether charges. Explicit results are
reported in the Supplemental Material [58], which includes
Refs. [69–76].
Other fermionic models.—We have also inspected the

SUð2j2Þ-symmetric (EKS model [70]) and SUð2j1Þ-sym-
metric (t-J model) fermionic lattice models of spin-carry-
ing electrons, where the conclusions do not change
provided the conservedUð1Þ charge Q̂ belongs to a bosonic
(i.e., even) SUð2Þ sector. Notice however that, in addition
to the conserved total magnetization Ŝz, the SUð2j1Þ-
invariant integrable t-J model conserves the total electron
charge N̂e that (in distinction to the total spin and charge in
the Fermi-Hubbard model) corresponds to a global Uð1Þ
charge, which does not belong to the SUð2Þ sector of the
full SUð2j1Þ symmetry of the Hamiltonian. The absence of
particle-hole symmetry for the electron charge implies a
finite charge Drude weight in any equilibrium state with a
finite density of electrons, and the diffusion bound cannot
be employed there. Likewise, in the SUð2j2Þ-symmetric
model of spin-full electrons there exists, besides two
independent spin SUð2Þ sectors as in the Hubbard model,
the third global Uð1Þ conserved charge (the Hubbard
interaction V̂H). The latter also yields a finite Drude weight
for all values of chemical potentials (cf. Ref. [58] for
additional information).
Conclusion.—We identified and discussed a class of

exactly solvable quantum lattice models with isotropic

FIG. 1. XXZ chain at infinite temperature: the black curve
shows diffusion bound [Eq. (5),] DðmÞ ≥ 2CðmÞð0Þ=ðβvLRÞ, and
the blue points display numerical values of the spin diffusion
constant obtained by time-dependent density matrix renormali-
zation group in Refs. [21,27]. The logarithmic divergence close to
Δ ¼ 1 is indicated by the dashed line. Notice that the bound does
not vanish even in the Ising limit Δ → ∞, in contrast to the
dissipative case [68]. Inside the gapless interval we display Δ ¼
cos π=l with l ¼ 3;…; 10.
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interactions where Noether charges exhibit sub-ballistic
transport with divergent diffusion constants. Superdiffusive
transport is attributed to the existence of infinitely many
bound states of magnons or electrons which behave at any
finite temperature [cf. Fig. 2 and Eqs. (11) and (10)] as
effective paramagnetic compounds of spins (or electrons):
their dressed spin (or charge) grows as ∼hs2 with their bare
mass s for small values of chemical potential h, and whose
velocities decay proportionally to 1=s. We wish to stress
that an infinite number of bound states in the spectrum
is not sufficient for a divergent diffusion constant, as shown
explicitly in the gapped regime of the anisotropic
Heisenberg spin-1=2 chain where, indeed, bound states
acquire dressed velocities that get exponentially suppressed
with their size.
There are several related aspects to be addressed in future.

At the moment it is difficult to estimate the importance of
integrability for the observed anomalous behavior. Although
we have excluded normal diffusion at half-filling, invoking
only a lower bound precludes determining the exact super-
diffusive dynamical exponent. Indeed, numerical simulations
on the isotropic quantum [37] and classical Heisenberg
magnet [77] give a firm indication of dynamical exponent
z ¼ 2=3—which is consistent with the Kardar-Parisi-Zhang
(KPZ) universality [78] {also observed in random unitary
circuits in ð1þ 1ÞD [79]}, in contrast to the standarddiffusive
exponent z ¼ 1=2 observed in anisotropic models and
strongly dissipative XXZ chains [80]. The hope is that the
models exhibiting superdiffusion identified in this Letter can
be viewed as representative models for a broad superdiffusive
universality class of quantum systems, possibly of the KPZ
type, whose precise determination remains an open problem.
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