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New techniques based on weak measurements have recently been introduced to the field of quantum
state reconstruction. Some of them allow the direct measurement of each matrix element of an unknown
density operator and need only OðdÞ different operations, compared to d2 linearly independent projectors
in the case of standard quantum state tomography, for the reconstruction of an arbitrary mixed state.
However, due to the weakness of these couplings, these protocols are approximated and prone to large
statistical errors. We propose a method which is similar to the weak measurement protocols but works
regardless of the coupling strength: our protocol is not approximated and thus improves the accuracy and
precision of the results with respect to weak measurement schemes. We experimentally apply it to the
polarization state of single photons and compare the results to those of preexisting methods for different
values of the coupling strength. Our results show that our method outperforms previous proposals in terms
of accuracy and statistical errors.
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Introduction.—The most common characterization of a
general quantum state is given by a density operator, and its
determination is one of the most important problems of
quantum mechanics. The usual way of reconstructing it is
known as quantum state tomography (QST). If d is the
dimension of the system, QST employs d2 linearly inde-
pendent projectors [1,2] and can become impractical for
large d. An alternative approach is based on the determi-
nation of the Moyal quasicharacteristic function by sequen-
tially measuring two conjugate variables [3,4].
Recently, Lundeen et al. [5,6] proposed new ways, called

direct reconstruction, to determine the density matrix
through weak measurements, processes in which the meas-
uring device (called a pointer) perturbs only slightly the
systemwhich it is coupled to, so as to limit the collapse of its
state [7–9]. These techniques have already been experimen-
tally verified [10,11] and thoroughly compared to QST [12].
One such protocol can find an entire density matrix with
only dþ 1 different unitary operations, a single d-outcome
projective measurement, and a small d-independent number
of pointer measurements. Moreover, its steps involve only
states in the measurement basis plus one off-basis compo-
nent, as will be detailed below. However, the use of weak
values implies that all these strategies are approximated
and affected by great statistical errors: there is a trade-off
between the validity of the approximation (improved by
weakening the interaction) and the statistical uncertainties
(improved by increasing the interaction).
It has been shown that for pure states, it is possible to

extend these schemes to arbitrary coupling strength (even

to strong measurements) without any approximation
[13–17]. Other methods valid for pure states were presented
in Refs. [18,19], whereas a generalization for mixed states
was also proposed in Ref. [13] and in Ref. [20].
Here, we propose a protocol for the (exact) direct

reconstruction of the density operator without weak mea-
surements. We also report on our experimental realization
applied to the polarization state of single photons. We
finally show that our method overcomes the weak meas-
urement proposal [11] in terms of accuracy and statistical
uncertainty, and we discuss the relation with standard QST.
Theoretical model.—The weak measurement process

uses a quantum pointer which represents the measuring
device [21,22]. We will focus on the case of bidimensional
pointers, where the Pauli operators X, Y, Z are naturally
defined [23]. To weakly measure an observable O on a
system S, the pointer A is initially prepared into j0iA, the
þ1 eigenstate of Z. Then, S and A are coupled through the
following unitary evolution:

U ¼ e−iθO⊗Y; ð1Þ

where θ represents the strength of the coupling. In the weak
approximation (θ ≪ 1), the expression for U can be
truncated at first order: U ≈ 1 − iθO ⊗ Y. However, when
O ¼ Π is a projector, the following equation holds exactly
for any θ:

U ¼ e−iθΠ⊗Y ¼ ð1 − ΠÞ ⊗ 1þ Π ⊗ e−iθY: ð2Þ
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A value of θ ¼ ðπ=2Þ represents a (maximally) strong
measurement, because the two possible pointer states after
the evolution are orthogonal. Then, a projection (called
postselection) on a specific state of the system may occur.
Finally, appropriate pointer measurements can extract
information on the system.
For the direct reconstruction of the density matrix ϱS, our

protocol (and its weak counterpart [6,11]) needs two
independent pointers A and B as illustrated in Fig. 1.
The initial system-pointer state is

σin ¼ ϱS ⊗ j0iAh0j ⊗ j0iBh0j: ð3Þ

In order to express the jkth element ϱjk of ϱS in the
orthonormal basis fjajig, j ¼ 1;…; d of the system Hilbert
space, the projector Πaj ¼ jajiShajj is coupled to the YA

operator of the first pointer:

UA;j ¼ e−iθAΠaj
⊗YA ⊗ 1B: ð4Þ

Then, the projector Πb0 ¼ jb0iShb0j is coupled to YB of the

other pointer, where jb0iS ¼ ð1= ffiffiffi
d

p ÞPjjajiS independ-
ently of j or k:

UB ¼ e−iθBΠb0
⊗YB ⊗ 1A: ð5Þ

These two evolutions must happen subsequently and
strictly in this order, because UA;j and UB do not commute
[24,25]. After this, some useful measurements that we will
detail below are performed on the pointers, while the
system is (projectively) measured in the fjakig basis.
In the limit of weak couplings, it is possible to neglect all

terms of order higher than θAθB and find a “weak” (W)
estimate for the matrix element ϱjk via the following pointer
measurements [6,11]:

ReðϱWjkÞ ¼ N ABðhXAXBij;k − hYAYBij;kÞ;
ImðϱWjkÞ ¼ N ABðhYAXBij;k þ hXAYBij;kÞ; ð6Þ

where we have defined the state-independent factorN AB ¼
d=4 sin θA sin θB. This can be determined by knowing the

values of θA;B or by normalizing ϱW . We note that ϱW

correctly approximates the original density matrix ϱS only
for small θA;B. For consistency with most of the literature,
in the above equations we do not explicitly mention the
projector Πak ¼ jakiShakj; however, the symbol hXAYBij;k
indicates the mean value of observable Πak ⊗ XA ⊗ YB

on the tripartite state after the evolution UBUA;j, namely

hXAYBij;k ¼ Tr½Πak ⊗ XA ⊗ YBðUBUA;jσinU
†
A;jU

†
BÞ�. We

find that by using Eq. (2), we can obtain an exact estimate
of the density matrix (see the Supplemental Material [26]):

ReðϱIjkÞ ¼ ReðϱWjkÞ þ 2N ABðtBhXAΠ1Bij;k
þ tAhΠ1AXBij;k þ 2tAtBhΠ1AΠ1Bij;kÞ;

ImðϱIjkÞ ¼ ImðϱWjkÞ þ 2N ABtBhYAΠ1Bij;k; ð7Þ

where Π1 ¼ j1ih1j ¼ ð1 − ZÞ=2 is the projector on the −1
eingenstate of Z, and tA;B ¼ tanðθA;B=2Þ. This protocol,
representing the direct generalization of the method pro-
posed in Refs. [6,11], needs more measurements than the
weak counterpart of Eq. (6) (eight, rather than four,
correlations should be measured for each element ϱjk).
However, as shown below, the increased complexity is
compensated by a better estimation of the density matrix.
Moreover, we also find a simpler expression, requiring
even fewer measurements than Eq. (6):

ϱIIjj ¼ 16N 2
ABhΠ1AΠ1Bij;k; ∀ k

ReðϱIIjkÞ ¼ −2N ABhYAYBij;k; j ≠ k

ImðϱIIjkÞ ¼ 2N ABhXAYBij;k: j ≠ k ð8Þ

Summarizing, these methods require the implementation of
dþ 1 unitary operations (UA;j and UB), one projective
measurement on the fjakig basis, and a small number of
pointer measurements [four observables for Eq. (6), eight
for Eq. (7), and three for Eq. (8)]. Moreover, they only need
to select the d components of the state of the system in the
measurement basis plus the jb0i component.
The fundamental advantage of the latter two schemes is

that they are accurate for any value of θ. (From now on, we
will only consider the case θA ¼ θB ¼ θ for simplicity,
although these equations are also valid for θA ≠ θB.)
Consequently, there is no need to tune the strength into
the range of the weak approximation, and it is possible to
use more practical strong measurements, which are more
akin to standard quantum projections and less prone to
statistical errors. Indeed, inverting the above relations
shows that the experimental data are proportional to
sin2 θ [except for the diagonal elements in Eq. (8), for
which the factor is sin4 θ] that greatly weakens the signal
when θ is small, making statistical errors more relevant.

FIG. 1. The reconstruction of the density matrix ϱS needs two
bidimensional pointers. Measurement A (B) consists of a unitary
evolution, UA;j (UB), and a projective measurement on the
pointer A (B). Finally, a projective measurement on the state
jaki is performed.
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We can evaluate the mean square statistical error δϱ as

δϱ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j;k

jδϱjkj2
s

: ð9Þ

If N labels the number of events used to measure each
correlation term in Eq. (6) [or in Eqs. (7) and (8)], we find
that in the weak approximation, δϱ has a lower bound:

δϱ ≥
αðdÞ
θ2

ffiffiffiffi
N

p ; ð10Þ

where αðdÞ ¼ ½ðd − 1Þ ffiffiffi
d

p �=½2 ffiffiffi
2

p � for the protocols of
Eqs. (6) and (7), and αðdÞ ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðd − 1Þðd − 4Þp �=2 for
Eq. (8). These equations were derived under the assumption
of reconstructing the entire matrix, taking its Hermitian
part, and normalizing it. The factor 1=θ2 highlights that the
weaker the coupling is, the greater the statistical errors
become.
Weak measurements are also more vulnerable to exper-

imental systematic biases. Indeed, terms like hXAYBij;k are
obtained from linear combinations of four contributions,
each of them representing one projector that appears in the
spectral decomposition of the Pauli operators. A small
proportional bias in one of them becomes relevant when
such linear combinations are also bound to be small by
factor sin2 θ.
In conclusion, our methods break the aforementioned

trade-off of weak measurements. They work with no
approximation in the strong measurement regime, which
allows more precise and accurate results. Moreover, the
method of Eq. (8) needs fewer measurements than its weak
counterpart (three different pointer operators, XAYB, YAYB,
Π1AΠ1B, instead of four).
Experimental implementation.—The experiment is

shown in Fig. 2. We produce polarization-entangled photon
pairs with a 30 mm periodically poled KTP crystal in a
Sagnac interferometer [27–29]. Degenerate down-converted
photons at 809 nm are collected into two single-mode fibers.

One photon is used as a trigger, while the other is sent to the
measurement apparatus, which reconstructs its polarization
state. We can adjust the purity of the measured qubit using
the half-wave plate (HWP) before the Sagnac interferometer.
The basic block in our implementation of the unitary

evolutions in Eq. (2) is a Mach-Zehnder interferometer.
A beam displacer (BD) is placed so that the two orthogonal
components ja0i and ja1i of the photon polarization are
spatially separated. The quantum state in now encoded in
the photon path, with polarization as the pointer. The
strength of the coupling is controlled by two twin HWPs,
one for each arm of the interferometer. When S ¼ Πa0 , the
polarization (pointer) is rotated about an angle θ by the
HWP on the path corresponding to the ja0i component.
This is achieved by aligning its optical axis at an angle θ=2
compared to ja0i. To realize the unitary in the case of
S ¼ Πa1 , we swap the role of the two paths by adding a
HWP before the initial BD. The measurement of X and Y
on the pointer state is performed using a quarter-wave plate
(QWP) and a HWP, whereas the measurement of Z is done
by blocking alternately one arm of the interferometer. Each
configuration of these plates and of the shutters corre-
sponds to a particular pointer projector that appears in the
spectral decomposition of one Pauli operator. A second
BD, which is oriented like the first one, closes the
interferometer, and a HWP with axis at 45° relative to
ja0i is placed after it. Only one of the two exit paths is
considered: here, the polarization is the result of the
collapse of the system after a successful pointer projection
identified by the orientation of the internal plates. In our
apparatus, we placed two interferometers in cascade,
implementing UA;j and UB. Since we chose ja0i and
ja1i to be the horizontal jHi and vertical jVi polarizations,
respectively, we have that jb0i is the diagonal polarization
jb0i ¼ jDi ¼ ðjHi þ jViÞ= ffiffiffi

2
p

. For this reason, two HWPs
at 22.5° are placed one in front and one at the end of the
second interferometer. Finally, a polarizer projects the system
on jaki.
A small change in the scheme allows us also to perform

the standard QST. By placing an additional QWP before the
first HWP and blocking one arm of the second interfer-
ometer, we can project the polarization of the photon on
the states jHi, jVi, jDi, and jRi ¼ ðjHi − ijViÞ= ffiffiffi

2
p

, thus
obtaining the density matrix ϱQ [1].
Results.—We chose the trace distance to compare the

reconstructed states given by Eqs. (6)–(8) with ϱQ, which is
used as a fixed reference for all values of the coupling
strength. For a fair comparison, we kept the reconstructed
states as raw as possible by taking their Hermitian part and
normalizing the trace, but without applying any postprocess-
ing such as a maximum likelihood estimation (MLE) [1].
Using the HWP in our source, we generated nine states

of different purities, measured as Tr½ðϱQÞ2�. We applied to
them the three methods at maximum strength (θ ¼ π=2).
Figure 3 reports the trace distance between the measured

FIG. 2. Experimental scheme.
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reconstructed states and the reference state: TðϱW; ϱQÞ
(circles), TðϱI; ϱQÞ (triangles), TðϱII; ϱQÞ (squares).
Predictably, the high value of strength invalidates the weak
approximation and makes the results of the method in
Eq. (6) inaccurate. There is no direct relation between
purity and these errors, which are rather influenced by the
particular input states. Instead, our two protocols show a
lower trace distance in the entire range of purity, confirming
the validity of our proposals for both mixed and almost pure
states.
In the second phase of the experiment, we varied the

coupling strength and focused only on two fixed input
states. The results are shown in Fig. 4 with the two prepared
states being jDi (top) and the maximally mixed one
(bottom). The solid lines display the expected trace distance
for the calculated state ϱW of Eq. (6) using the experimental
ϱQ as an estimate of ϱS. Again, they show that the weak
approach is not reliable as the strength increases. In the
strong regime, these curves well reproduce the measured
data TðϱW; ϱQÞ, but we see larger trace distances than
expected for weak coupling. This is probably due to the
aforementioned greater vulnerability to small inaccuracies
in the pointer projections, which only become relevant at
low values of θ. The protocol of Eq. (7) is similarly
affected, because ϱI ≈ ϱW for small strength as the higher-
order corrective terms become negligible. These biases
have the same effect in the extraction of nondiagonal
elements of Eq. (8), but terms like hΠ1AΠ1Bij;k in the
diagonal elements are a source of errors too. Indeed, the
corresponding photon counts are weakened by a factor of
sin4 θ, which is extremely small for low strength. Errors in
the experimental realization of the projector or miscalcu-
lations of θ can cause the diagonal matrix elements to be
much greater than expected, and the subsequent normali-
zation of the trace can render the nondiagonal ones close
to zero. This explains the high trace distance in Fig. 4 (top)
for ϱS ¼ jDihDj (for which the nondiagonal elements are
0.5) and the slightly lower one in Fig. 4 (bottom) for the
maximally mixed state (which has null nondiagonal
elements).
However, Fig. 4 also shows how ϱI and ϱII become

compatible with the reference state for large values of
strength, confirming the correctness of these approaches.

It is also clear that the weak measurement proposal is not
accurate even at very small θ due to the high sensitivity to
imperfections and systematic errors. Our method presents
similar features at low θ, but it drastically improves the
performance at large θ.
We also evaluated the mean square statistical error δϱ

given in Eq. (9) associated with the reconstructed matrices,
which can be seen in Fig. 5. The lines display the theoretical
expectation values of these errors, evaluated with the total
number of events N ≈ 8 × 103 and N ≈ 4 × 104 used in the
experiments (top and bottom, respectively). Our results
closely follow such curves and further prove that the errors
dramatically increase for small values of θ. The lower trace
distances and statistical errors on the right sides of Figs. 4
and 5 clearly demonstrate the superiority of our strong
measurement method with respect to the weak counterparts.

FIG. 3. Trace distance between reconstructed states and
reference states for different input purity: TðϱW; ϱQÞ (circles),
TðϱI; ϱQÞ (triangles), TðϱII; ϱQÞ (squares).

FIG. 4. Trace distance between reconstructed states and refer-
ence state, for the input states (top) jDi and (bottom) maximally
mixed. The solid line represents the theoretical trace distance
between the expected value of ϱW and the experimental ϱQ.

FIG. 5. Mean square statistical error on the reconstructed states,
for the input states (top) jDi and (bottom) maximally mixed. The
lines represent the theoretical expectations for δϱW (points), δϱI

(dashes and points), and δϱII (dashes).
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Increasing the value of θ, as allowed by themethod proposed
here, has a double advantage: it reduces the statistical errors
and makes the protocol more robust against imperfections.
Discussion.—We have proposed a scheme to directly

reconstruct the density matrix that extends the existing idea
based on weak measurement, making it exact for any value
of the coupling strength with the pointers. In particular, we
have shown that the use of strong measurements makes our
protocol less vulnerable to experimental statistical and
systematic errors in comparison to the original proposal
[11], while the lack of approximations in our expressions
makes the results devoid of any inherent biases.
In particular, our method uses the same resources and

experimental operations of the weak counterpart, but it
achieves much better performance.
It is worth noticing that our protocol, the weak meas-

urement proposal [11], or the QST [1] can extract a raw
density matrix from the system. As also underlined in
Ref. [11], if (semi)positivity is required, a postprocessing
on the data (such as MLE or equivalent techniques) is
necessary for any method. On the other hand, if a single
matrix element is required (in this case semipositivity
cannot be verified), Eqs. (7) and (8) give it directly and
without approximation in terms of the measured observ-
ables. As for any measurement, the single matrix element
will be affected by experimental errors that can be mitigated
by measuring all matrix elements and imposing positivity.
We note that in the QST framework, the single matrix
element ϱjk can be obtained bymeasuring the four projectors
Πaj , Πak , Πjþjki, and Πjijki with jþjki ¼ 2−1=2ðjaji þ jakiÞ
and jijki ¼ 2−1=2ðjaji þ ijakiÞ. However, differently from
the direct method, this approach requires projectors on states
that are outside of the basis used to express the densitymatrix
and that are different for each matrix element. If all elements
are required, d2 independent projectors are needed, and for
large dimension systems this may become a very hard
experimental challenge.
For this reason, we advocate that our scheme might be

preferable to QST when the dimension d of the system is
large. Indeed, to determine all the matrix elements, it is
sufficient to realize dþ 1 unitary operations UA;j and UB,
one d-outcome projective measurement on the system, and
a limited number of pointer measurements [just three in the
case of Eq. (8)]. All of these only involve states of the
measurement basis plus one off-basis component (jb0i), a
beneficial feature especially for systems that have a clearly
preferred basis which is experimentally more accessible.
Our experimental realization proves the validity of our

proposal and shows that strong measurements are a feasible
and convenient way to reconstruct the density operator even
in the single-photon regime.

We acknowledge Dr. Matteo Schiavon for the useful
discussions on the entangled photon source. L. C. and G. F.
contributed equally to this work.
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