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We establish that a Bloch-state ansatz based on periodic uniform matrix product states (PUMPS),
originally designed to capture single-quasiparticle excitations in gapped systems, is in fact capable of
accurately approximating all low-energy eigenstates of critical quantum spin chains on the circle. When
combined with the methods of [Milsted and Vidal, Phys. Rev. B 96, 245105] based on the Koo-Saleur
formula, PUMPS Bloch states can then be used to identify each low-energy eigenstate of a chain made of
up to hundreds of spins with its corresponding scaling operator in the emergent conformal field theory
(CFT). This enables the following two tasks that we demonstrate using the quantum Ising model and a
recently proposed generalization thereof due to O’Brien and Fendley [Phys. Rev. Lett. 120, 206403].
(i) From the spectrum of low energies and momenta we extract conformal data (specifying the emergent
CFT) with unprecedented numerical accuracy. (ii) By changing the lattice size, we investigate non-
perturbatively the renormalization group flow of the low-energy spectrum between two CFTs. In our
example, where the flow is from the tricritical Ising CFT to the Ising CFT, we obtain excellent agreement
with an analytical result [Klassen and Melzer, Nucl. Phys. B370, 511] conjectured to describe the flow of
the first spectral gap directly in the continuum.

DOI: 10.1103/PhysRevLett.121.230402

Near a continuous phase transition, two microscopically
different systems are assigned to the same universality
class if they display similar long-distance behavior [1]. In
the language of the renormalization group (RG), which
describes how physics changes with scale, such systems are
said to “flow” to the same scale-invariant theory or RG
fixed point. These fixed points are often described by a
conformal field theory (CFT) [2,3], which itself is specified
by a set of parameters known as conformal data.
Given a microscopic description of a critical system

(e.g., a lattice Hamiltonian), an important, yet challenging,
task is to extract the conformal data as a means of
identifying the universality class of the phase transition.
For critical quantum spin chains—the focus of this Letter—
much progress can be made in highly fine-tuned models,
such as integrable lattice models (e.g., Refs. [4–10]).
However, for a generic critical spin chain Hamiltonian,
one must resort to numerical methods. Exact diagonaliza-
tion techniques are certainly useful [11,12], but can only
address small systems, where the universal low-energy
physics is often concealed by the nonuniversal, micro-
scopic details. Monte Carlo methods can address much
larger systems [13], but only in models that do not suffer
from the sign problem. On the other hand, tensor network
methods [14–16] are both sign-problem free and scalable,
and several schemes have been proposed to extract con-
formal data [17–22]. These include schemes [17–19,21]
based on the matrix product state (MPS) [15,23], which is

the ansatz underlying the density matrix renormalization
group (DMRG) algorithm [14,24].
In this Letter, we establish that a Bloch-state ansatz [25]

based on periodic uniform matrix product states (PUMPS)
[26] is ideally suited to numerically investigate the emer-
gent universal properties of critical quantum spin chains
(see Ref. [27] for previous use in critical systems). Our key
observation is that, despite being originally designed to
capture only some (namely single-quasiparticle) low-
energy excitations in gapped systems [25], PUMPS
Bloch states turn out to accurately reproduce all low-
energy eigenstates of critical quantum spin chains (that is,
up to some appropriate maximum energy) [28]. The ability
of PUMPS to simulate systems consisting of several
hundreds of spins allow us to then put forward two new
applications of this tensor network ansatz: (i) extraction,
with unprecedented accuracy, of the conformal data char-
acterizing the underlying CFT and thus the universality
class of the corresponding continuous phase transition;
(ii) nonperturbative computation of the RG flow of the low-
energy spectrum between two CFTs. Here we demonstrate
these applications using the quantum Ising model and its
recently proposed generalization due to O’Brien and
Fendley [30], with which we study the spectral RG flow
between the tricritical Ising CFTand the Ising CFT. We find
excellent agreement between our numerical results and an
analytical result [31] conjectured to describe the flow of the
first spectral gap directly in the continuum.
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Matrix product state ansatz.—Given a local Hamiltonian
H for a critical quantum spin chain of N spins on the circle,
we compute approximations to the ground state and excited
states. For the ground state we use a PUMPS jΨðAÞi [26],
which is specified by a tensor As

ab of dimension d ×D ×D,
where d is the dimension of the Hilbert space of one spin
and D is the bond dimension, which restricts the amount
of entanglement. It has the translation-invariant form
jΨðAÞi≡P

d
s⃗¼1

trðAs1As2…AsN Þjs⃗i, where s⃗ ¼ s1…sN .
To find the variational ground state, we minimize the
energy with respect to As

ab using a gradient descent method
[29,32]. We then seek excitations within the space of
PUMPS Bloch states [25,27], which have the form

jΦpðBÞi≡
XN

j¼1

e−ipjT j
Xd

s⃗¼1

trðBs1As2 ;…; AsN Þjs⃗i; ð1Þ

where T is the translation operator, p is the momentum, A
is the ground-state PUMPS tensor, and Bs

ab is a tensor that
parametrizes a Bloch state and is obtained by diagonalizing
an effective Hamiltonian [33].
We assess the performance of the ansatz [Eq. (1)] for

critical systems using the critical transverse field Isingmodel
H ¼ −

P
N
j¼1 ½σXj σXjþ1 þ σZj �. As a first test, we compute the

variational ground state and excitations jϕαi for a small
system of N ¼ 20 spins and check the fidelity fα ≡
hϕαjϕexact

α i with their counterparts computed using exact
diagonalization. We find, for the fixed bond dimension
D ¼ 12, that the first 41 excited states have errors ϵα ≡ 1 −
jfαj2 ranging from 10−4 to 10−11, and that this error always
scales to zerowith increasingD. To test larger systems,where
we can no longer use exact diagonalization, we compare the
low-energy spectrum of excitation energies with the CFT
prediction for the N → ∞ limit. We find that all variational
low-energy excitations have energies consistent with the
CFT prediction up to a maximum energy that depends on the
system size N and the bond dimension D, see Ref. [29] for
more details.We conclude that all low-energy excitations are
well approximated by the Bloch-state PUMPS [Eq. (1)]. This
is remarkable, given that this ansatz was originally proposed
[25] for single-quasiparticle excitations in gapped systems,
where multiquasiparticle excitations require an alternative,
significantly more sophisticated ansatz [41].
Extracting conformal data.—Given the excited states of

the critical spin chain, wewish to extract conformal data of the
2D CFT describing its RG fixed point. This includes the
central chargec and the scalingdimensionsΔα and conformal
spins Sα of a subset of scaling operators ϕα (CFT operators
that are covariant under dilations and rotations), namely those
known as primary fields [2]. There are several useful results
[42–49] that relate quantities computed froma finite spin chain
to this conformal data. Here we make use of the discovery
[42–45] that the eigenstates of H have energies Eα and
momenta Pα given by

Eα ¼ Aþ B
2π

N

�

Δα −
c
12

�

þOðN−xÞ;

Pα ¼
2π

N
Sα; ð2Þ

where N is the number of spins, and A, B, x are constants
specific to the microscopic modelH, with x > 1 determining
subleading corrections to the dominant scaling with N. Up to
these constants, Eq. (2) is determined by universal quantities,
with each pairΔα, Sα corresponding to a CFT scaling operator
ϕα via the operator-state correspondence [2]. Indeed, we can
identify each eigenstate jϕαi with a CFT operator ϕα using
the methods of Ref. [12] based on approximate lattice
representations [46]

Hn ¼
N
2π

XN

j¼1

eijnð2π=NÞhj ∼ Ln þ L̄−n; ð3Þ

of theVirasoro generatorsLn, L̄n of conformal transformations
[2]. These act as ladder operators on the eigenstates jϕαi ofH,
which are organized into conformal towers of states, each
descended from a distinct primary field state. To illustrate
how the above identification jϕαi ∼ ϕα works, here are three
examples: (i) lattice energy eigenstates corresponding to CFT
primary operators are those that can not be lowered in energy
by any of H�1, H�2 (up to some matrix elements that decay
with system size) [12]. For instance, in a unitary CFT, the
ground state of the critical spin chain is always identified with
the primary identity operator I [2]; hence it receives the label
jIi. (ii) The lattice state jTi corresponding to the stress tensor
operator T [2] is characterized as the energy eigenstate jψi,
which maximizes jhψ jH−2jIij, in analogy with the CFT
relation L−2jIiCFT ¼ ffiffiffiffiffiffiffiffiffiffiffiðc=2Þp jTiCFT. Below we use eigen-
states jIi and jTi to compute an estimate of the central charge
c ≈ 2jhTjH−2jIij2 [46]. (iii) The CFT analog of H2H−2jIi is
ðL2 þ L̄−2ÞL−2jIiCFT ¼ ajIiCFT þ bjTT̄iCFT, where a and b
are constants of order 1 determined by conformal symmetry,
and we have used L̄2jIiCFT ¼ 0. We may thus identify
the lattice state jTT̄i corresponding to the operator TT̄
[50–52] as the energy eigenstate jψi ≠ jIi that maxi-
mizes jhψ jH2H−2jIij.
For instance, for N ¼ 64 spins and bond dimension

D ¼ 24, we obtain a correct identification of all low-energy
states jϕαi of the critical Ising model with scaling operators
ϕα of the Ising CFT up to scaling dimension Δα ¼ 6 (see
Ref. [29] for plots). We then compute variational excita-
tions for a number of system sizes N and, by extrapolating
to large N, we estimate the scaling dimensions of a
selection of scaling operators, as well as the central charge
using Eq. (3): see Table I. We obtain excellent accuracy,
with our results being consistently better than those from
other methods [20,21,53,54], such as finite-entanglement
scaling with infinite MPS [21], or MERA and TNR
techniques [20,53] (see Ref. [29] for a detailed
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comparison). The computations for this test were carried
out in a matter of minutes on a modestly powerful laptop. In
addition, the algorithms we use, despite being somewhat
more complicated than DMRG, are significantly simpler
than those required for the aforementioned methods.
Spectral RG flow.—We now turn [55] to the O’Brien-

Fendley (OF) model [30],

H ¼
XN

j¼1

½−σZj σZjþ1 − σXj þ λðσXj σZjþ1σ
Z
jþ2 þ σZj σ

Z
jþ1σ

X
jþ2Þ�;

ð4Þ
which contains the critical Ising model for λ ¼ 0 and, as the
latter, is symmetric under σZ → −σZ and self-dual under
the Kramers-Wannier duality. The model remains in the
Ising CFT universality class for 0 ≤ λ < λTCI. At λTCI ≈
0.428 there is a tricritical Ising (TCI) point [30], which we
confirm by extracting the central charge and some selected
scaling dimensions, shown in Table I, as we did for the
Ising model. This model is particularly interesting for our
purposes because, with respect to the Ising CFT, the
dominant contribution to the λ term comes from the
irrelevant TT̄ operator [50–52]. With respect to the TCI
CFT, the same term corresponds instead to the relevant
primary operator ε0 (ϕ1;3 in the Kac table [3]), which is
known to generate a flow to the Ising CFT [59,60]. This can
be confirmed by computing the matrix elements of the λ

term in the low-energy eigenbasis ofH at the Ising and TCI
points. The interpolating flow between the TCI and the
Ising CFTs via closely related operators has been studied in
integrable field theory [31,61,62] and in integrable lattice
models [5,6,63], as well as using the truncated CFT Hilbert
space approach [64,65]. Here, we study the flow non-
perturbatively in a nonintegrable lattice model using
methods that can be applied to any spin-chain system.
To do this, we compute the low-energy spectrum of the
model for fixed λ, scaled and shifted so that the ground state
has E ¼ ΔI ¼ 0 and jTi hasE ¼ ΔT ¼ 2 (see Ref. [12]), as
a function of the system size N.
We call the flow with N a spectral RG flow [66] to

emphasize that we are studying the flow of the low-energy
spectrum, rather than the couplings of an effective
Hamiltonian. How should we expect the spectral RG flow
to look? We can think of the model with λ ¼ λTCI − δ (for
small δ > 0) as a relevant deformation of the TCI CFT.
Accordingly, at small N the low-energy physics will be
dominated by the nearby TCI point, while increasingN will
eventually reveal the Ising CFT. We observe this flow at,
e.g., λ ¼ 0.4, where in Fig. 1 we see that the low-energy
excitations spectrum at N ¼ 32 exhibits some striking
similarities to the TCI CFT spectrum, while at N ¼ 256
it looks like the Ising CFT spectrum. Also in Fig. 1, we
show conformal tower membership computed using Eq. (3)
[12,29]. At N ¼ 32, despite strong corrections due to the
relevant ε0 perturbation and further irrelevant perturbations,

TABLE I. Central charge and selected scaling dimensions from
lattice Virasoro matrix elements [12] and energy gaps derived
from PUMPS Bloch states [29]. For the Ising model, we used
system sizes N ≤ 228 and bond dimensions 24 ≤ D ≤ 49. For
the OF model near its tricritical Ising (TCI) point, we used N ≤
128 and 28 ≤ D ≤ 44 (requiring more computational time than
used for the Ising model [29]). Note the good agreement in the
latter case, despite being slightly off critical.

Critical Ising model

Exact PUMPS Error

c 0.5 0.499 9997 10−7

Δσ 0.125 0.124 9995 10−7

Δε 1 0.999 9994 10−7

Δ∂∂̄σ 2.125 2.125 01 10−5

Δ∂∂̄ε 3 3.000 02 10−5

ΔTT̄ 4 4.007 10−3

OF model, TCI point

Exact PUMPS Error

c 0.7 0.6991 10−4

Δσ 0.075 0.074 92 10−5

Δε 0.2 0.200 1 10−4

Δσ0 0.875 0.874 7 10−4

Δε0 1.2 1.203 10−3

Δε00 3.0 3.002 10−3

(a) (b)

(c) (d)

FIG. 1. Top: Scaling operator spectra of (a) the Ising and (b) the
TCI CFTs (with a selection of operators labeled). Bottom:
Approximate scaling dimensions and conformal-tower identifi-
cation for the OF model at λ ¼ 0.4 with (c) N ¼ 256, D ¼ 52,
and (d) N ¼ 32, D ¼ 32, corresponding to points of Fig. 2. We
label a selection of states according to a numerical identification
of the corresponding CFT operators [12,29]. Note: We displace
data points slightly along the x axis to show degeneracies.

PHYSICAL REVIEW LETTERS 121, 230402 (2018)

230402-3



we nevertheless reproduce the low-lying tower-member-
ship results of the TCI. At a largeN, the state identifications
match the Ising CFT.
In Fig. 2 we further plot the spectral RG flow at λ ¼ 0.4

for a selection of states, including some that would
correspond to primary operators in the TCI CFT. We find
we can easily determine which Ising CFToperators the TCI
CFT primaries are mapped to:

TCI operator I σ ε σ0 ε0

Ising operator I σ ε ∂∂̄σ TT̄

These results match those found in other studies of
different microscopic realizations of the same CFTs, e.g.,
Ref. [6], and conform with expectations from symmetry
considerations. The identity of ε0 in the TCI CFTwith TT̄ in
the Ising CFT matches their both being associated with the
λ term in H.
We can better confirm the TCI operator identities of the

low-energy states at λ ¼ 0.4 by tracking them as a function
of λ → λTCI. This we do in Fig. 3 for fixedN ¼ 32. We find
a very similar pattern to Fig. 2, which we would expect if
the RG flow of Hamiltonian couplings sends λ to zero for
any starting λ < λTCI. Using both plots we can connect the
low-energy eigenstates at λ ¼ 0.4, N ¼ 256, which we
identified with Ising CFT operators, with corresponding
eigenstates at λTCI, N ¼ 32, where they clearly match up
with TCI CFT operators.
Finally, in Fig. 4, we compare [29] our spectral RG flow

to the results of Ref. [31], where methods of integrable field
theory are used to arrive at a conjecture for the RG flow of
the first spectral gap in the continuum. We find increasingly
good agreement for larger system sizes N → ∞, consistent

with vanishing finite-size corrections due to lattice
effects. We note that our methods should allow us to study
nonperturbatively the RG flow of a large number of
additional energy levels in generic spin chain systems.
Summary and conclusions.—We have proposed and

demonstrated the use of PUMPS and PUMPS Bloch states
for extraction of conformal data from critical spin chains.
The ability to compute accurate variational low-energy
eigenstates at large system sizes (far beyond the reach of
exact diagonalization) using these techniques enabled us to
study a spectral RG flow in the O’Brien-Fendley model
[30] and identify low-energy eigenstates with CFT oper-
ators in both the Ising and tricritical Ising CFTs.
We remark that it is a priori far from obvious that

PUMPS Bloch states should be an appropriate ansatz for all
low-energy excited states. After all, in a noncritical spin
chain, only single-particle excitations are well captured by
this type of ansatz [67], and a different ansatz [41] is needed
to capture multiparticle excitations. However, in a critical
system (for sufficiently large bond dimension [68]) corre-
lations in the PUMPS are long range so that the tensor B of
Eq. (1) is capable of modifying the ground state wave
function more globally than in the gapped case, making the
ansatz more expressive. Note that the ansatz can easily be

FIG. 2. Spectral RG flow (crosses) of the first five energy levels
(as apparent scaling dimensions Δ) at momentum zero, excluding
Δ ¼ 0, extracted from the OF model with λ ¼ 0.4, using PUMPS
with D ≤ 52. For comparison, we also plot the exact scaling
dimensions of the Ising and TCI CFTs (dots, diamonds). The
crossover between the two highest levels plotted, which we
confirm by tracking conformal tower membership using Hn
matrix elements, is consistent with these states belonging to
different Kramers-Wannier self-duality sectors.

FIG. 3. Connection of the spectral RG flow of Fig. 2 (left) to the
“flow” of OF model energy levels as a function of λ at fixed
system size N ¼ 32, computed using PUMPS withD ¼ 28. Note
how the apparent scaling dimensions agree with the TCI CFT
values at the TCI point λTCI ≈ 0.428.

FIG. 4. Flow of the first spectral gap from Fig. 2 compared [29]
with the integrable field theory result of Ref. [31], conjectured to
describe the equivalent flow in the continuum.
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further improved by considering B tensors that encompass
two or more lattice sites, instead of one [69].
Finally, we comment on the benefits of dealing with

variational energy eigenstates, such as PUMPS Bloch
states, that are exact momentum eigenstates by construc-
tion. Perhaps most importantly, the momentum directly
delivers the conformal spin via Eq. (2), which is therefore
known exactly. Furthermore, distinguishing between
degenerate energy eigenstates via momentum makes it
easier to isolate states corresponding to particular CFT
operators. This is crucial for follow-up work [70] in which
we variationally determine lattice operators corresponding
to CFT primary field operators, allowing us to compute
operator product expansion coefficients for primary fields,
thus completing the extraction of conformal data from a
generic critical quantum spin chain Hamiltonian.
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