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We introduce a notion of contextuality for transformations in sequential contexts, distinct from the Bell-
Kochen-Specker and Spekkens notions of contextuality. Within a transformation-based model for quantum
computation we show that strong sequential-transformation contextuality is necessary and sufficient for
deterministic computation of nonlinear functions if classical components are restricted to mod2 linearity
and matching constraints apply to any underlying ontology. For probabilistic computation, sequential-
transformation contextuality is necessary and sufficient for advantage in this task and the degree of
advantage quantifiably relates to the degree of contextuality.
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Contextuality is a key nonclassical phenomenon exhibited
by quantum systems, which was first considered by Bell [1]
and by Kochen and Specker [2]. It has been the subject of
renewed interest recently as a range of results have estab-
lished it to be the essential ingredient for enabling quantum
advantages over classical implementations of a variety of
informatic tasks [3–5], simulation of quantum processes [6],
and for enabling universal quantum computing [7–12]. A
broader notion of contextuality due to Spekkens et al. [16]
has also been shown to be essential to quantum advantages
relating to state discrimination and one-way communication
protocols [17–21]. However, questions remain over which
forms of contextuality provide advantage in which precise
settings [22] and whether existing notions of contextuality
are sufficient to account for all instances of quantum
advantage. For example, there exist a variety of advantages
achievable with a single qubit [23–25], where Bell-Kochen-
Specker (BKS) contextuality cannot arise [2,26] and to
which there is no apparent link to the Spekkens version.
This raises the important question of which nonclassical
feature could be at play if not contextuality of these kinds.
We introduce a notion of contextuality for transformations

performed in sequential contexts that is inequivalent to the
notion of transformation contextuality introduced by
Spekkens [27]. It is necessarily present in a recently discov-
ered form of quantum advantage in shallow circuits [28]. We
will show, via aMermin-style [29,30] parity argument, that it
is also crucial in enabling increased computational power in
the single qubit example of [25]. The setting for that example
is a transformation-based model of quantum computing,
which we call here l2-TBQC, that was shown to be useful
in achieving secure delegated computing. In the model, a
classical control computer, whose power is limited to mod2-
linear computation,may interact with a quantum resource, by
which its computational powermay be enhanced. Aswith the
analogous measurement-based model, l2-MBQC [4], which

was the setting for the results of [3–5], it can provide a useful
tool for probing the roots of quantum advantage. In this
setting, we show more generally that sequential-transforma-
tion contextuality is necessary and sufficient to enable
advantage in the task of probabilistically computing any
nonlinear functionwhenever classical ontologies are required
to respect the computational assumptions. Moreover, the
degree of contextuality can be related to the probability of
success, and in particular, strong (i.e., maximal) contextuality
is necessary for deterministic computation of any nonlinear
function.
Our results trace an arc that parallels developments

relating BKS contextuality to quantum advantage in l2-
MBQC:Anders andBrowne provided an example inwhich a
contextual resource is sufficient for the computation of a
particular nonlinear function [3]; Raussendorf then proved
that strong contextuality is necessary for any deterministic
nonlinear computation [4], as initially observed by Hoban
et al. for nonadaptive l2-MBQC [31] based on an early
version of [4]; he also showed that contextuality is necessary
for quantum advantage in the task of probabilistically
computing any nonlinear function; this latter result was later
sharpened to show more precisely how the degree of
contextuality as measured by the contextual fraction relates
to probability of success in [5]. Our results set the stage for
further investigation of how sequential-transformation con-
textuality may relate to quantum advantages, speedups,
and the onset of universality in other settings, as the results
of [7–10] do for BKS contextuality.
Ontological models.—Quantum theory exhibits a num-

ber of apparently nonintuitive features. Crucially, in many
cases there exist no-go theorems that establish that there is
no way these features can be explained away by recourse to
any deeper or more complete theory that would obey
certain classical intuitions [32]. Some such nonclassical
features are nonlocality [33], (BKS) contextuality [1,2,34],
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and forms of preparation and transformation contextuality
[27], while others relate to macrorealism [43–46] and the
ontic nature of the quantum state [47–54]. A convenient
formalism for treating such theorems is that of ontological
models, which we briefly set out next. Note that in this
Letter when we speak of ontological models, we will not be
assuming any additional features beyond what is explicitly
set out below (e.g., of the kind present in [27]).
The central component is an ontic state space Λ,

comprising the states of a hypothetical underlying theory.
Preparation of a quantum state ρ results in an ontic state
sampled according to a probability distribution dρ on Λ
[55]. In the simplest case, a quantum transformation U
corresponds to a measurable function fU∶ Λ → Λ. For
consistency we require that fU�dρ ¼ dUρU† , where the left-
hand side is the push forward of dρ along fU, defined by
fU�dρðλÞ ¼ dρ½f−1U ðλÞ�. We also require that the function
corresponding to the identity operator simply maps each
ontic state to the δ function centered on that state, ensuring
that f1�dρ ¼ dρ for all preparations ρ. In particular, the
requirements entail that unitaries correspond to invertible
functions. A quantum measurement M corresponds to a
function ξM∶ Λ → PðOÞ, which assigns to each ontic state
a probability distribution over the set of outcomes O. For
any combination of preparation, transformation and meas-
urement, the ontological theory predicts that the empirical
statistics, eρ;U;M ∈ PðOÞ, are given by

eρ;U;M ¼
X
λ∈Λ

dρðλÞξM½fUðλÞ�: ð1Þ

In fact, our results apply more generally to ontological
models in which transformations may correspond to sto-
chastic mixtures of measurable functions. However, we will
see shortly that, for our present purposes, since such an
ontological model can always be expressed as a convex
decomposition of ones in which transformations are deter-
ministic, it will suffice to establish no-go properties for those
with deterministic transformations. No-go theorems arise
when it is found that ontological models satisfying some
additional, perhaps “classical,” assumptions are unable to
realize the empirical predictions of quantum theory.
(Non-)contextuality.—In the BKS sense, noncontextual-

ity is an assumption of classicality that applies when
certain finite sets of compatible measurements may be
performed jointly in contexts. It requires that for each valid
context C compatibility is reflected at the ontological level
through factorizability of the joint measurement function
ξC∶ Λ → PðOjCjÞ; i.e.,

ξC ¼
Y
M∈C

ξM: ð2Þ

Implicit in this is the crucial requirement that, for any
measurement M occurring in contexts C and C0, its
ontological representation ξM is context independent; i.e.,

ξMðCÞ ¼ ξMðC0Þ :

This description of noncontextuality via factorizability is
equivalent to the description in terms of global valuations
that may be more familiar to some readers [35].
Next, we mention some specific instances arising from

Spekkens’ general notion of noncontextuality [27].
Measurement noncontextuality in the explicit sense treated
in the no-go results of [27] relaxes (2) to the weaker
requirement that

ξCjM ¼ ξM;

for all M and C such that M ∈ C, where ξCjM denotes the
marginalization of ξC to M.
Transformation and preparation noncontextuality in the

explicit sense treated in the no-go results of [27] takes as
context any convex decomposition of a given transforma-
tion or preparation. This has an operational motivation.
Suppose, as a concrete example, that some transformation
T admits the following unitary decompositions:

T ¼ 1

2
Ua þ

1

2
UA C;

T ¼ 1

3
Ua þ

1

3
Ub þ

1

3
Uc: C0

Operationally, context C is “apply Ua or UA uniformly at
random,” and context C0 is “apply Ua, Ub, or Uc uniformly
at random”; quantum mechanically the contexts are equiv-
alent. Noncontextuality requires that convex decomposi-
tions are reflected at the ontological level; i.e., in this
instance,

fT ¼ 1

2
fUa

þ 1

2
fUA

¼ 1

3
fUa

þ 1

3
fUb

þ 1

3
fUc

:

Again, it is implicit that ontological representations of
transformations and preparations are independent of opera-
tional context; e.g.,

f
UðCÞ

a
¼ f

UðC0Þ
a

:

Sequential transformations.—With the preceding ver-
sions for comparison, we now introduce a version of
noncontextuality for transformations in sequential contexts.
It requires that, for each finite sequence of transformations,
C ¼ fUigti¼1, sequential composition is reflected at the
ontological level; i.e.,

fUt���U1
¼ fUt

∘ … ∘ fU1
:

It is assumed that the ontological representations of trans-
formations are independent of sequential context; i.e.,
whenever a transformation U occurs in contexts C and C0,
it holds that

fUðCÞ ¼ fUðC0Þ :

PHYSICAL REVIEW LETTERS 121, 230401 (2018)

230401-2



When a set of empirical data or predictions cannot be
reproduced by an ontological model satisfying this property,
it is said to be contextual.
Contextuality in our sense implies that the system of

study cannot have an ontology in which transformations
correspond to modular, composable operations on ontic
states, such that they are well defined independently of
which transformations may have been performed previ-
ously or will be performed subsequently. Either we must
reject the ontological picture entirely or give up on these
highly intuitive, classical properties. Note that one plau-
sible, if conspiratorial, mechanism for introducing some
contextuality might be through causal dependence on
transformations having appeared earlier in the sequence,
but even this kind of mechanism is precluded when the
transformations being modeled commute.
The constant-depth quantum circuits of [28] provide a

concrete example of sequential-transformation contextuality,
as they can at best be simulated by classical circuits whose
depth grows logarithmically in the size of the input. If a
modular, noncontextual ontological description of gate
transformations at each step in the circuit were possible,
then it would give rise to classical circuits for the same task,
which would also have constant depth. Connections to
quantum advantage in this setting will be investigated in
future work; here we focus on examples in a more restricted
setting.
Quantification.—An empirical model e ¼ feCg, asso-

ciates with each context C a distribution over observed
outcomes [35]. Similar to [5], given any empirical model
and appropriate version of contextuality, we may consider
convex decompositions of the form

e ¼ ωeNC þ ð1 − ωÞe0; ð3Þ

where eNC and e0 are also empirical models, and eNC is
noncontextual. The maximum value of ω over all such
decompositions is the noncontextual fraction of e, written
NCFðeÞ, and correspondingly, the contextual fraction of e is
CFðeÞ ≔ 1 − NCFðeÞ [56]. For BKS contextuality, the
contextual fraction corresponds to the maximum achievable
normalized violation by e of any generalized Bell inequality
[5]. Here, however, we use it to quantify sequential-
transformation contextuality. Using the terminology of the
hierarchy of BKS contextuality introduced in [35], an
empirical model is said to be strongly contextual when
CFðeÞ ¼ 1.
For a given experimental scenario, the set of all the

possible eNC is convex, and any extremal point corresponds
simply to fixing a deterministic function fU∶ Λ → Λ for
each transformation U featuring in the scenario. Strong
contextuality thus arises in the extreme case that no global
assignment of deterministic functions to transformations is
consistent with even a fraction of the empirical behavior.

l2-TBQC.—We consider a classical control computer
restricted to mod2-linear computation that can interact with
a resource, which may be quantum, as follows. The
resource is prepared in a fixed state, the control computer
may interact with it by means of controlled transformations,
then a fixed measurement is performed on the resource, and
its outcome returned to the control computer. This captures,
for example, the single qubit protocols of [25], which were
considered for their security features in a setting in which a
client delegates certain operations making up an l2-TBQC,
such as state preparation and measurement, to a server.
Note that, independent of the l2 restriction, any meas-

urement-based quantum computation [61] can equivalently
be expressed as a TBQC, since choice of a measurement
setting is equivalent to choice of a transformation prior to a
fixed measurement.
An example of an l2-TBQC that performs a basic non-

linear function, the AND gate on classical input bits a and b,

gða; bÞ ¼ ða ⊕ 1Þ ⊗ ðb ⊕ 1Þ ⊕ 1;

is the following (Fig. 1) [62]. The control computer receives
inputs a and b. For the resource, the fixed state is the qubit
state jþi, the fixed measurement is given by the Pauli
operator σX, and the controlled transformations are UðaÞ,
then VðbÞ, then Wða ⊕ bÞ, where

Uð0Þ ¼ Vð0Þ ¼ Wð0Þ ¼ I;

Uð1Þ ¼ Vð1Þ ¼ Wð1Þ ¼
�
1 0

0 eiπ=2

�
:

Notice that all transformations commute. The output of the
computation is the measurement outcome interpreted in Z2,
with eigenvaluesþ1 and−1mapped to 0 and 1, respectively.
In terms of complexity classes, access to a qubit quantum
resource promotes the computational power from the class
⊕L [63,64] to P, as with the example in [3] in the setting of
l2-MBQC.
⊕L ontology.—Of course, classical computers can

perfectly well compute nonlinear functions and they also
constitute valid noncontextual ontologies. To pose a mean-
ingful computational question about whether a resource
may be used to boost power from ⊕L to P, therefore, we
will restrict attention to⊕L ontologies, which we define as
follows. Recalling that⊕L circuits are built entirely of NOT
and controlled-NOT (CNOT) gates [64], we will suppose that
available transformations are built from these and act on an
ontic state space Zs

2, for some s ∈ N. In what follows, we
will be interested in protocols in which transformations
commute. These can already permit efficient solutions to
problems for which it is believed there can be no efficient

FIG. 1. The basic single qubit AND protocol from [25].
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classical solution [65]. For transformations in commutative
⊕L ontologies, it holds that, for any transformation U,

fUðλÞ ¼ ðI ⊕ AUÞλ ⊕ u; ð4Þ
where AU is an s × s matrix over Z2 containing only off-
diagonal entries and u ∈ Zs

2 (see Supplemental Material
[66]). For composition of transformations fUigti¼1 with
ontological representations determined by fAi; uig, it holds
that

fUt
∘ � � � ∘ fU1

ðλÞ ¼ λ ⊕ ⨁
t

i¼1

Aiλ ⊕ ⨁
t

i¼1

ui:

A dichotomic measurement in an ⊕ L ontology can most
generally be described by a transformation followed

by output of the bit value of a fixed entry j of the final
ontic state vector; i.e., λ0 · δ where λ0; δ ∈ Zs

2 are the
post-transformation ontic state and the vector with jth
entry 1 and 0’s elsewhere, respectively.
Proposition.—Any commutative ⊕L-ontological reali-

zation of the AND l2-TBQC is transformation contextual.
Proof.—Suppose that preparation results in an initial

ontic state λ ∈ ðZ2Þs. From (1), noncontextual realization
of the protocol requires Eqs. (5)–(8) to be satisfied. These
describe evaluation of the computation for the four possible
sequential contexts, where ontological representations of
UðkÞ, VðkÞ, and WðkÞ, with k ∈ f0; 1g, are determined
through Eq. (4) by fAUðkÞ; uðkÞg; fAVðkÞ; vðkÞg, and
fAWðkÞ;wðkÞg, respectively, and of the transformation
component of the measurement by fAM;mg,

½λ ⊕ AUð0Þλ ⊕ AVð0Þλ ⊕ AWð0Þλ ⊕ AMλ ⊕ uð0Þ ⊕ vð0Þ ⊕ wð0Þ ⊕ m� · δ ¼ 0; ð5Þ

½λ ⊕ AUð0Þλ ⊕ AVð1Þλ ⊕ AWð1Þλ ⊕ AMλ ⊕ uð0Þ ⊕ vð1Þ ⊕ wð1Þ ⊕ m� · δ ¼ 0; ð6Þ

½λ ⊕ AUð1Þλ ⊕ AVð0Þλ ⊕ AWð1Þλ ⊕ AMλ ⊕ uð1Þ ⊕ vð0Þ ⊕ wð1Þ ⊕ m� · δ ¼ 0; ð7Þ

½λ ⊕ AUð1Þλ ⊕ AVð1Þλ ⊕ AWð0Þλ ⊕ AMλ ⊕ uð1Þ ⊕ vð1Þ ⊕ wð0Þ ⊕ m� · δ ¼ 1: ð8Þ

Under the assumption of noncontextuality, the equations
are not jointly satisfiable. This can be deduced from the fact
that the sum modulo 2 of the right-hand sides is one,
whereas the sum of the left-hand sides is zero, since each
vector appears an even number of times, leading to
cancellations. Note that a contextual realization would
permit ontological representations to vary according to
context; e.g., uð0Þð4Þ ≠ uð0Þð5Þ. Contextually, we can
always satisfy the equations. The conclusion is that, while
⊕L-ontological descriptions are possible, they are neces-
sarily transformation contextual. ▪
The above proof is similar to Mermin’s parity version

[29,30] of the Greenberger-Horne-Shimony-Zeilinger
inequality-free argument for nonlocality [67,68] and is
an instance of an all-versus-nothing proof of strong con-
textuality [69], albeit for transformation rather than BKS
contextuality.
Proposition.—Strong transformation contextuality is

necessary for ⊕L-ontological realization of any nonlinear
commutative l2-TBQC.
The proof is in the Supplemental Material [66].
Given two functions g; h∶ Zr

2 → Z2, we can define an
average distance between these functions as

dðg; hÞ ≔ 2−rjfijgðiÞ ≠ hðiÞgj:
This can be used to measure the degree of nonlinearity of
any function g∶ Zr

2 → Z2 as the distance to the closest
linear function of that type,

νðgÞ ≔ min fdðg; hÞjh∶Zr
2 → Z2linearg:

Theorem.—If a commutative l2-TBQC, with resource
empirical model e, probabilistically computes a function
g∶ Zr

2 → Z2 with an average failure probability ε over all
2r possible inputs, then

ε ≥ NCFðeÞνðgÞ:
The theorem extends the preceding proposition, since, in

particular, it implies that deterministic computation (ε ¼ 0)
of a nonlinear function [νðgÞ > 0] requires strong con-
textuality [NCFðeÞ ¼ 0]. The proof is in the Supplemental
Material [66] and is similar to that of Theorem 3 in [5].
Discussion.—The present results highlight the potential

of sequential contextuality as a source of quantum advan-
tage of a single qubit over arbitrarily many classical bits for
a particular kind of computational task. While the ⊕L-
ontological assumptions are natural in the particular setting
of restricted classical computation that we consider, a
direction for future research will be to consider examples
of sequential-transformation contextuality in less restricted
settings, like that of [28], as well as to explore other
potential connections to quantum advantage, especially in
single qubit systems [23,24]. It also remains to be seen how
the present notion of contextuality can be treated in
resource-theoretic frameworks of the kind developed in
[5,57,70–72]. A related analysis, in terms of irreversibility,
of transformation-based protocols is contained in [73], and
in the future, it may be interesting to consider advantages as
arising from a combination of these phenomena [74]. From
a foundational perspective, in light of the present analysis,
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the experimental results of [75,76] could already be said to
provide indirect experimental evidence for a kind of
sequential-transformation contextuality, but this leaves
open the possibility for experiments designed specifically
to test for the feature, which might also aim to minimize
potential issues, such as the detection loophole.
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