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The non-Newtonian flow behavior of thermal and athermal disordered systems of dispersed uniform
particles at high densities have strikingly similar features. By investigating the flow curves of yield-stress
fluids and colloidal glasses having different volume fractions, particle sizes, and interactions, we show that
both thermal and athermal systems exhibit power-law scaling with respect to the glass and jamming point,
respectively, with the same exponents. All yield-stress flow curves can be scaled onto a single universal
curve using the Laplace pressure as the stress scale for athermal systems and the osmotic pressure for the
thermal systems. Strikingly, the details of interparticle interactions do not matter for the rescaling, showing
that they are akin to usual phase transitions of the same universality class. The rescaling allows us to predict
the flow properties of these systems from the volume fraction and known material properties.
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The transition between solidlike and liquidlike behavior
in yield-stress fluids is awell-known phenomenon [1,2], that
has remained poorly understood quantitatively [3,4]. An
important established, but ill-understood, fact is that thermal
and athermal systems share important similarities at the
rheological level [5]. As an example, Fig. 1 shows the
systems and the flow curves of a suspension of colloidal hard
spheres [panels (a) and (c)] and of an athermal oil-in-water
emulsion [panels (b) and (d)] at different volume fractions ϕ
of particles and droplets. Both have a critical volume fraction
ϕc above which a yield stress emerges, i.e., a concentration
above which the amorphous solid behaves elastically for
small deformations but flows when a stress is applied that
exceeds the yield stress. Below ϕc, the material is a fluid
having a viscosity that increases rapidly with ϕ. The hard-
sphere thermal system undergoes a glass transition
ϕc ¼ ϕG ∼ 0.58, while the purely athermal system exhibits
a jamming transition ϕc ¼ ϕJ ∼ 0.64, which corresponds to
the maximum volume fraction of randomly packed solid
objects (random close packing, rcp). The flow properties of
both types of systems are often well described by the
Herschel-Bulkley equation σ ¼ σy þ K _γβ (above ϕc) and
the Cross equation σ ¼ ηN _γ=ð1þ C_γ1−δÞ (below ϕc). Here,
σ is the shear stress, σy is the yield (shear) stress, _γ is the shear
rate, ηN is the Newtonian viscosity and K, β, C, and δ
are adjustable parameters. For athermal systems, the jam-
ming transition is often characterized by a power-law
dependence of the yield stress and the crossover rate to
shear thinning on the distance to ϕc: σy ¼ σ0jΔϕjΔ and
_γco ¼ _γ0jΔϕjΓ, with jΔϕj ¼ jϕ − ϕcj, which then lead to a
collapse of all concentration-dependent flow curves onto
one supercritical and one subcritical branch [6–9].

The scalings with the distance to jamming and the
subsequent collapse of the data are reminiscent of classical
phase transitions. The central question we ask here is
whether the jamming and glass transitions can both be
understood in this way. There has been a lot of discussion in
the literature about the analogy between jamming and
critical phenomena. In theoretical treatments of jamming,

FIG. 1. Confocal microscope images and flow curves across the
thermal colloidal glass transition for a suspension of PMMA hard
spheres of radius R ≈ 183 nm [10] (a) and (c) and an oil-in-water
emulsion with droplet radius R ≈ 1.6 μm across the athermal
jamming transition [8] (b) and (d). In both cases, a yield stress
appears above a certain critical density ϕc (dashed line). The
black lines are fits to the Herschel-Bulkley model above ϕc.
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the scaling exponents for athermal systems depend on the
details of the interactions between particles [11–15], which
excludes a universal treatment of different types of systems.
On the other hand, experiments on athermal systems
suggest that the collapse is rather universal [9]; also, a
comparison of soft and hard particles, indeed, suggests that
their rheology is similar, only with different stress scales
that reflect the different interactions [16]. Simulations
[17,18] suggest that the crossover between the jamming
and the glass transition can also be described by assuming
an additive combination of the different stresses from glass
and jamming physics, σð_γÞ ¼ σG þ σJ þ ηs _γ. Therefore,
the important question remains whether a universal rescal-
ing of flow curves for thermal and athermal systems exists
by an appropriate scaling of the stress scales.
Here, we investigate the crossover between thermal and

athermal yield-stress regimes by comparing the flow curves
of a variety of systems. First, we show that the flow curves
of three different athermal emulsions with different inter-
particle interactions can be collapsed with respect to the
jamming transition, using the Laplace pressure as stress
scale, and a common set of exponent values. Second, we
study the flow curves of thermal systems; it is shown that
they can be scaled in a way similar to the athermal systems
and with very similar common exponent values. How-
ever, the rescaling now happens with respect to the glass
transition and with the osmotic pressure as the stress scale.
Finally, we demonstrate that all yield-stress flow curves of
both thermal and athermal systems, over the full concen-
tration range of the glass and jamming regimes, can be
collapsed onto a single master curve taking the different
contributions to the stress as additive. A simple micro-
scopic two-state model of a balance between caged and
flowing particles allows us to describe both regimes in
these flow curves, pinpointing the origin of the observed
universality. These results allow us to predict flow behavior
merely from the constituent materials and their volume
fractions, which was hitherto impossible, but has far-
reaching implications.
The distinction between thermal and athermal systems is

clear from the emergence of the yield stress: this happens at
ϕ ≈ 0.58 for the glassy systems, and at ϕ ≈ 0.64 for the
jamming systems. For athermal jamming, the characteristic
stress and time scales originate from the interaction energy
(ϵ) of the particles. We consider elastic emulsions that have
a repulsive interaction energy which is due to the defor-
mation of the droplets. The athermal emulsions interact
through a screened Coulomb interaction, which becomes
shorter ranged when more salt is added to the continuous
phase. Therefore, the energy scale is set by the surface
tension, and the stress scale is given by the Laplace pressure

σ0 ¼
ϵðRÞ
R3

¼ Σ
R
; ð1Þ

with Σ the surface tension and R the particle radius. The
corresponding time scale is

τ0 ¼
η0
σ0

¼ η0R
Σ

; ð2Þ

with η0 of the order of the solvent viscosity. Likewise, we
can define the stress and time scales for Brownian motion
with the thermal energy kBT

σT ¼ kBT
R3

; ð3Þ

τT ¼ η0
σT

¼ η0R3

kBT
: ð4Þ

From the above expressions, it becomes clear that the
thermal and mechanical stresses are comparable when
kBT ≈ ϵ, while they become increasingly separated in
the athermal limit kBT ≪ ϵ [18].
For the experiments, three types of athermal emulsions

were prepared: castor oil-in-water emulsions with droplets
of diameter ∼3.2 μm and a polydispersity of 10% (mea-
sured from confocal images). The use of different surfac-
tants allows us to change the interactions [9,19]: 1 wt%
sodium dodecyl sulphate in water (creating mobile surfa-
ces), 0.4 wt% bovine serum albumin and 0.4 wt% propyl-
ene glycerol algenite (creating rigid surfaces), and 1 wt%
sodium dodecyl sulphate in 0.05M NaCl (creating a
screened and, hence, softer electrostatic interaction). The
oil-water interfacial tension was measured for the three
types of emulsions using a pendant-drop method [20].
Rheological measurements were performed on an Anton
Paar MCR 302 using a roughened cone-plate geometry.
The thermal systems are charge-stabilized, monodisperse
silicone oil-in-water emulsions (having radii of 250, 530,
and 740 nm) [21] and a poly (methyl methacrylate)
(PMMA) colloidal glass (of radius 183 nm) [10]. An
overview of the values for the surface tension, radius,
and ϵ=kBT for the different systems is given in the Supple-
mental Material [22].
First, we study the steady-state rheology of three different

athermal emulsions; their flow curves are plotted in Fig. 2(a).
The flow curves can then be collapsed onto master curves for
the supercritical and subcritical data, with the critical volume
fraction chosen as ϕJ ¼ 0.64 (rcp). Determining the precise
volume fraction for our emulsions is not a problem since we
know exactly the volume fractions of water and oil when
preparing the samples; this is more difficult for colloidal hard
spheres [23]. However, for the rescalings presented below,
the critical volume fractions ϕJ and ϕG are independently
determined experimentally by extrapolating where the yield
stress goes to zero. The elasticity of the droplets and
their deformation under compression is controlled by the
Laplace pressure, Eq. (1). By plotting σ=σ0jΔϕJjΔ versus
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η0 _γ=σ0jΔϕJjΓ, with η0 ¼ 1mPas, all flow curves of the
athermal emulsions can be collapsed onto a single curve
[Fig. 2(c)]. For each flow curve of the different systems and
volume fractions, the exponents Δ and Γ are adjusted, but
their values remain in a narrow range: Δ ¼ 2.08� 0.14 and
Γ ¼ 3.87� 0.36. Using the same exponents, the subcritical
flow curves (corresponding to fractions below ϕJ) collapse
automatically onto another master curve. The supercritical
master curve can be fit to the Herschel-Bulkley equation
σ� ¼ 1.0þ 2.5_γ�0.54, and the subcritical branch can be fitted
to the Cross equation σ� ¼ 1.2_γ�=ð1þ 0.48_γ�1–0.54Þ, where
σ� and _γ� are dimensionless rescaled shear stress and shear
rate, respectively.
For the thermal monodisperse emulsions [21] and

PMMA hard-sphere colloidal glass [10] [Fig. 2(c)], the
main difference with the case of athermal systems is that the
glass transition can be observed to occur around ϕG ≈ 0.58.
This is where the glass transition occurs for hard spheres,
and the observation that thermal emulsions and colloidal
hard-spheres show very similar behavior also indicates that
this transition is independent of the interactions between
the particles. We find that all flow curves can be collapsed if
we scale them with respect to the glass transition and using
the stress scale given by thermal fluctuations kBT=R3

[Fig. 2(d)]. To obtain this master curve, we find values
for Δ and Γ that are strikingly similar to those found for
the athermal flow curves, Δ ¼ 2.08� 0.47 and Γ ¼
3.88� 0.46. The stress scale is found to be proportional
to the thermal stress σT ¼ αkBT=R3 with α ¼ 35 000. The
large prefactor α likely has to be attributed to the high
entropic osmotic pressure that results from limited free
volume for thermal motion [21,24,25]. A prefactor of order
104 can be calculated, e.g., from published MCT data for
the thermal yield stress (ϕ ¼ 0.60, ϵ=kBT ¼ 105 − 107),
while simulations in this case give α ∼ 103 [26].
The flow curves of the thermal systems below ϕJ shown

above are dominated by the osmotic pressure. Ikeda et al.
[17] show that, if the jamming and glass transitions are
sufficiently separated, a new Newtonian regime of diverg-
ing viscosity should develop at high rates, controlled by the
elastic interaction of the particles; above ϕJ, a correspond-
ing jamming yield stress appears. The latter high yield
stress is obvious in the data of Fig. 2(b) for ϕ > ϕJ, but a
new Newtonian regime cannot be recognized for ϕ < ϕJ. It
appears that the two transitions are still insufficiently
separated. We do note (i) that our thermal systems above
ϕJ and athermal systems show very similar jamming
behavior, and (ii) that the glassy behavior of the thermal

FIG. 2. (a) Flow curves of athermal castor oil-in-water emulsions with different interactions and different volume fractions ϕ. (b) Flow
curves of thermal systems: different droplet sizes of silicone oil-in-water emulsions and PMMA particles. Volume fraction ϕ increases
along the direction of the arrows, the exact values are listed in the Supplemental Material [22]. (c) Rescaled flow curves for athermal
emulsions. The solid and dotted black lines are fits to the Herschel-Bulkley and Cross equations, respectively. (d) Rescaled flow curves
for thermal systems below ϕJ. The flow curves of the emulsion with R ¼ 740 nm are not included here because they are not purely
thermal; see Supplemental Material [22] for the result with the 740-nm emulsion included.
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systems is remarkably similar to the jamming behavior. The
striking similarity of the glass and jamming yield point can
be understood in terms of particle cage escape across a
microscopic stress barrier, as described by a simple micro-
scopic model for the critical transition (see Supplemental
Material [22] and [9]).
As suggested by Ikeda et al. and borne out by our model,

an additive combination of the characteristic stresses and
rates enables us to superimpose all thermal and athermal
flow curves, by plotting σ=½σT jΔϕGjΔ þ θσ0jΔϕJjΔ� versus
η0 _γ=½σT jΔϕGjΓ þ θσ0jΔϕJjΓ� (Fig. 3). Here, we only
needed to introduce, in view of the absent second
Newtonian regime, a step function θ ¼ 0 if ϕ < ϕJ and
R < 1 μm, and unity, otherwise, see Supplemental Material
[22]. The striking conclusion is that, in this way, all flow
curves, both thermal and athermal, collapse onto a single
master curve with values of the exponents in a narrow
range: Δ ¼ 2.08� 0.28 and Γ ¼ 3.87� 0.40 (Fig. 4).
Whether the exponents are truly universal or not is hard
to judge and remains open to further investigation. There
appears, e.g., a slight trend with particle size in the averages
of the thermal systems, but data are limited and for fixed
size there are sometimes large spreads in exponent values,
pointing to numerical inaccuracy [see Supplemental
Material [22], Fig. S2(a)]; note, also, that through the
method of data collapse, any error in σy, σ0, or ϕ has been
ignored and translated into an artificial error in Δ. In any
case, these results imply that it is possible to predict the
yield stress and flow behavior using only the volume
fraction, particle sizes, and surface tension in a universal
fashion.
We have shown that the flow curves of thermal and

athermal systems can be scaled onto one universal curve
using the Laplace pressure as stress scale for athermal
systems and the osmotic pressure for the thermal systems,
finding the same power-law exponents for the glass and
jamming effects. For thermal systems, we have both hard-
sphere colloids and thermal emulsions. In [27], it is

proposed, for thermal systems, that the effective interaction
of the analogous athermal system is a logarithmic repul-
sion, due to the entropic forces. This is valid for hard
spheres very close to the jamming transition. Away from
jamming, the validity of this mapping breaks down, and the
interaction becomes of many-body type [28]. So the
conclusion from our experiments is that, for the rescaling,
it does not matter whether the spheres are hard or soft when
they are thermal.
The athermal emulsions behave the same as the thermal

systems, in the sense that their rescaling exponents are very
similar. These are soft spheres with a harmonic interaction.
There is no scaling for athermal hard spheres, because this
case is a singular one: below ϕJ, there is no yield stress, and
at ϕJ, there is, but it is impossible to go beyond ϕJ for hard
spheres because they cannot be compacted beyond random
close packing [29]. In addition, Hertzian contact inter-
actions between particles also give the exponents we find
here [7]; in [16], it was shown that the interactions between
these particles are best described by a Hertz contact.
As far as theory and simulations are concerned, for

athermal systems, [30] shows why the rescaling exponents
from simulations [13] are different from the experiments:
the simulations probe a different regime much closer to
jamming than can be achieved experimentally. A complete
overview of all the different exponents and their possible
relation with the interactions is given in [9]; specifically, the
exponents that differ for different interactions are in the
regime very close to jamming once again.
For the experiments, an additive combination of glass

and jamming stresses is sufficient to achieve rescaling of
all flow curves. The extension from jamming to the glass
transition is easy to do within the simple microscopic
model some of us introduced earlier (see [8,9] and
Supplemental Material [22]) describing the heterogeneous
dynamics in the system. The model considers that the
fraction s of stagnant caged particles satisfies a balance
equation and, thereby, becomes a function of the distance
to the yield-stress line, independent of whether the system
is thermal or athermal. The macroscopic flow-rate

FIG. 3. Collapse of all thermal and athermal flow curves, with
Δ ¼ 2.08 and Γ ¼ 3.87. The solid and dotted black lines are fits
to the Herschel-Bulkley and Cross equations, respectively.

FIG. 4. Δ versus Γ for the different thermal and athermal
systems with corresponding standard deviations.
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dependence of the stress then follows from the microscopic
rate of stress-induced cage escape and its relation to a
length scale of cooperative motion. This heterogeneity
length scale diverges as a power-law in js − scj when
approaching the critical yield stress, implying that we
consider a second-order dynamical critical transition.
This microscopic two-state picture of a balance between
caged and flowing particles can, therefore, be applied both
to the jamming and the glass transition. This is again
reminiscent of classical phase transitions, where the fluc-
tuations dominate the interactions, resulting in a universal
behavior.
In conclusion, we propose a scaling that applies to both

thermal and athermal systems, finding universal exponents
for the jamming and glass transitions. This means that we can
predict, rather than fit, characteristic stress and rate prefactors
from material properties and, hence, predict flow properties.
This is of considerable importance for, e.g., the food or oil
industries; once the volume fractions, drop sizes, and inter-
facial tensions are known, an accurate estimate of the yield
stress and post-yield viscosity can be made that will allow us
to tailor food properties or help to improve oil recovery rates.

We thank G. Petekidis for sending his rheology data used
in this work.
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