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We discuss noncollinear magnetic phenomena whose local order parameter is characterized by more
than one spin vector. By focusing on the simple cases of 2D triangular and 3D pyrochlore lattices, we
demonstrate that their low-energy theories can be described by a one-parametric class of sigma models
continuously interpolating between the classical Heisenberg model and the principal chiral model
Trð∂aU∂aU†Þ for all U ∈ SUð2Þ. The target space can be viewed as a U(1) fibration over the CPð1Þ
space. The 3D version of our model is further generalized to break spatial and spin rotation symmetry
SOð3Þ × SOð3Þ → SOð3Þ.
DOI: 10.1103/PhysRevLett.121.227201

The principal chiral model (PCM) is the first term of the
model proposed by Skyrme to describe nucleons as
topological solitons of the underlying pion field [1].
The realization of this model in magnetism anticipates
the possibility of observing quasispherically symmetric
pointlike skyrmions in real materials. These skyrmions are
different from the two-dimensional (2D) “baby” skyrmion
configurations recently reported in chiral collinear ferro-
magnets [2–4], because noncollinear and collinear magnets
have different order parameter manifolds (target spaces):
SOð3Þ and S2, respectively. The corresponding homotopy
groups are π3½SOð3Þ� ¼ Z and π2ðS2Þ ¼ Z, implying that
skyrmions of collinear magnets, such as ferromagnets, are
pointlike particles in 2D systems (thin films), while sky-
rmions of noncollinear magnets are pointlike particles in
three-dimensional (3D) bulk materials.
Below, we will show that low-energy magnetic phenom-

ena are described by a class of sigma models interpolating
between the classical Heisenberg model and the PCM
[see (9) with β ¼ 0]. The continuous limit of the classical
Heisenberg model is a sigma model with the S2 target space,
while the PCM in the case at hand has the S3 target space.
The interpolation corresponds to a continuous deformation
of noncollinear magnetic orderings into collinear orderings
described by a single vector. We present examples of 2D
and 3D lattices, starting from the case of three orthonormal
unit vectors and then expanding the theory to a more general
situation. The low-energy theory (after integrating out
gapped modes) can be described by virtue of three-
component vectors eμ, where the subscript μ marks distinct
vectors (μ ¼ 1, 2, 3) while the superscriptA belowmarks the
components in the spin space (A ¼ 1, 2, 3). The basis set can
be chosen as follows [5]:

eAμ ¼ δAμ : ð1Þ

Quantum (gapless) fluctuations rotate the original basis set
by the coordinate-dependent matrix

mμðxÞ ¼ RðxÞeμ; RðxÞ ∈ SOð3Þ: ð2Þ
If we use the SUð2Þ conventions,

mA
μ ðxÞ ¼

1

2
Tr½UðxÞêμU†ðxÞσA�; êμ ≡ eμ · σ; ð3Þ

where UðxÞ ∈ SUð2Þ and σ stands for three Pauli matrices.
The convolution over the spatial derivatives ∂a (a ¼ 1, 2

for 2D models and a ¼ 1, 2, 3 for 3D models) reduces
to [6]

∂amμ0 · ∂amμ0 ¼ 4

� X
μ¼1;2;3

JμaJ
μ
a

�
− 4Jμ0a J

μ0
a ; ð4Þ

where in the above formula there is no summation over μ0.
The current Ja is defined as

Ja ¼ ð∂aU†ÞU≡ X
μ¼1;2;3

iJμaσμ; ð5Þ

and Jμa ¼ −ði=2ÞTrðJaσμÞ. Now, if we sum over all three
values of μ0 ¼ 1, 2, 3, we arrive atX
μ0¼1;2;3

∂amμ0 · ∂amμ0 ¼ 8
X

μ¼1;2;3

JμaJ
μ
a ¼ 4Trð∂aU∂aU†Þ:

ð6Þ
Up to an overall constant, the last expression is nothing
but the PCM, which has an SUð2Þ × SUð2Þ=Z2 ≅ SOð4Þ
chiral symmetry, namely, U → O1UO2 with arbitrary O1,
O2 ∈ SUð2Þ. The ground state partly breaks the above
symmetry. Indeed, if we impose (for definiteness) the
boundary condition Uð∞Þ ¼ 1, the ground state becomes
UðxÞ≡ 1, spontaneously breaking the chiral SOð4Þ
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symmetry down to a “diagonal” SOð3Þ isospin symmetry
corresponding to the requirement O2 ¼ O†

1.
The model (6) can be generalized in various directions.

For instance, in the left-hand side of (6) in the sum over
μ0, one can drop one term, say, with μ0 ¼ 3. Then, instead
of (6) we will getX

μ0¼1;2

∂amμ0 · ∂amμ0 ¼ 4
X

μ¼1;2;3

JμaJ
μ
a þ 4J3aJ3a: ð7Þ

More generally, one can replace the set (1) by the following
set:

mμ ·mν ¼ α; μ ≠ ν; 0 ≤ α ≤ 1; and m2
ν ¼ 1: ð8Þ

Here α is the cosine of the angle between any pair of the
basic vectors. In both cases above and in similar situations,
the Hamiltonian will be generically proportional to

H ∼
X

μ¼1;2;3

JμaJ
μ
a − βJ3aJ3a; ð9Þ

where β is a numerical parameter. For the Heisenberg
model we have β ¼ 1, while β ¼ 0 for the PCM. A similar
model was considered in a somewhat different context in
the massive CPðNÞ model for frustrated spin systems [7].
As we will see below, the latter case is realized by certain
noncoplanar magnets, while the intermediate 0 < β < 1
case is realized by the nearest-neighbor (NN) antiferro-
magnetic (AFM) Heisenberg model on the triangular
lattice (TL) [8] (see Fig. 1). There is a whole one-
parametric family of models (with β neither zero nor
one) which interpolates between them. The target space
of the emerging sigma model is a deformed sphere S3β
which is topologically equivalent to an S3, 3D sphere
(nondeformed S3 corresponds to β ¼ 0). If β ≠ 1, the target
space represents a U(1) fibration over CPð1Þ space. In
terms of three angles, the metric of (9) is determined by

ds2 ∼

8<
:dθ2 þ cos2θdϕ2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

S2

þ ð1 − βÞðdψ þ sin θdϕÞ2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
S1 fibration

9=
;;

ð10Þ
where here and below ∼ means proportional; i.e., inessen-
tial overall numerical factors are omitted. It is obvious that

for β ¼ 1 we return to S2, i.e., the Heisenberg model.
The scalar curvature corresponding to (10) is constant over
the target space and proportional to 1

4
ð3þ βÞ. Moreover,

π3ðS3βÞ ¼ Z for all β < 1, implying that skyrmion-type
solutions are supported by topology. Four-derivative terms
are briefly discussed after Eq. (27).
The formulation (8) is physically most transparent in

exhibiting the continuous interpolation between the
Heisenberg model and PCM in the magnetic phenomena.
Indeed, if α ¼ 1, all three vectors mμ (μ ¼ 1, 2, 3) are
collinear and fluctuate as a single vector, while when α ¼ 0
we return to (6) (see Fig. 1).
The continuous family of the sigma models presented

above (to be revealed below in some magnetic phenomena)
plays a special role in mathematical physics. First of all,
in 2D all these models are integrable and were exactly
solved [9–14] by various methods, which makes them
rather unique. Second, they possess topologically nontrivial
excitations [15] of the skyrmion type [1,16]. If the
parameter β in (9) is set to zero, the target space is just
the round sphere S3, and the topological excitation is
just the standard skyrmion. However, with increasing β
(keeping β positive), we deform it, and it would be very
interesting to trace the evolution of the topological exci-
tation, especially when β approaches unity; i.e., the target
space becomes close to S2.
Two-dimensional model.—Now we will consider a half-

filled Hubbard model [17–22] on the TL:

H ¼ −
X
hiji

X
σ

tijðc†iσcjσ þ H:c:Þ þ U
X
i

ni↑ni↓; ð11Þ

where tij are the hopping amplitudes up to the third nearest
neighbor ft1; t2; t3g and U is the on-site electron repulsion.
Here we will assume that jt2j; jt3j < jt1j. This model can be
realized in the adatom system on a semiconductor surface
Sn=Sið111Þ-ð ffiffiffi

3
p

×
ffiffiffi
3

p Þ [23] or in transition metal dichal-
cogenide moiré bands [24].
In the large-U limit, H can be reduced to an effective

S ¼ 1=2 spin model H̃ by expanding in the small tμ=U
ratio (μ ¼ 1, 2, 3). To fourth order in t1 and second order in
t2 and t3, H̃ ¼ H̃J þ H̃K contains both AFM Heisenberg
and plaquette exchange terms [25,26]:

H̃J ¼
X
hiji

JijSi · Sj;

H̃K ¼ K
X
hijkli

½ðSi · SjÞðSk · SlÞ þ ðSi · SkÞðSj · SlÞ

− ðSi · SlÞðSj · SkÞ�: ð12Þ

The sum in H̃J runs over all the possible bonds ij with
Jij ¼ J1 ¼ 4t21=U − 28t41=U

3 for the NN, Jij ¼ J2 ¼
4t22=U þ 4t41=U

3 for the next NN (NNN), and Jij ¼ J3 ¼
4t23=U þ 4t41=U

3 for the third NN. The sum in H̃K runs over

FIG. 1. Typical cases of ordered magnets that fall under the
general scheme described by Eq. (8). (a) Collinear ordering
m1 ¼ m2 ¼ m3. (b) Coplanar 120° ordering of NN Heisenberg
antiferromagnet on the TL [8]. (c) Noncoplanar orderings
considered in this Letter.
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all the smallest parallelograms, with fj; kg connecting the
NNN and K ¼ 80t41=U

3.
Assuming thatU is large enough for the Heisenberg term

to be dominant, the ordering wave vectors in the classical
limit are obtained by minimizing the classical energy of
H̃J, Ecl ¼

P
η¼1;2;3

P
δη
JηS2 cos k · δη, where δη runs over

the relative positions of the ηth NN. In this Letter, we will
focus on the parameter space where the ordering wave
vectors are the M points (half of reciprocal lattice vectors
along the ½1=2;� ffiffiffi

3
p

=2� and ½0;−1� directions) of the
Brillouin zone of the TL, which will be denoted by Qμ

(μ ¼ 1, 2, 3) [27–29].
The classical spin configurations that minimize H̃J are

Sr ¼ S
X
μ

sμ cos ðQμ · rÞ ð13Þ

with sμ · sν ¼ 0 for μ ≠ ν and
P

μsμ · sμ ¼ 1. This classical
ground state parametrization includes single-, double-, and
triple-Q orderings. This accidental degeneracy is removed
by quantum fluctuations and by the addition of H̃K .
Quantum fluctuations (order by disorder) [30–32] favor
the collinear single-Q ordering,

Sr ¼ Suμ cos ðQμ · rÞ; ð14Þ
depicted in Fig. 2(a) [uμ is a unit vector with arbitrary
direction because of the SU(2) invariance of H]. In
contrast, H̃K favors the noncoplanar triple-Q ordering
[27–29,33]

Sr ¼
Sffiffiffi
3

p
X
μ

uμ cos ðQμ · rÞ; ð15Þ

shown in Fig. 2(c). Note that uμ · uν ¼ δμν. The triple-Q
state breaks not only the continuous SUð2Þ symmetry but

also the discrete chiral symmetry with a local order
parameter,

Sj · ðSk × SlÞ ≠ 0; ð16Þ

associated with the noncoplanar nature of this triple-Q
ordering. Here fj; k; lg denote the three sites in each
smallest triangle, and we adopt the anticlockwise conven-
tion for circulation (j → k → l). Indeed, the triple-Q state
has uniform scalar chirality (orbital ferromagnetism) [34],
whose sign is fixed by the sign of u1 · ðu2 × u3Þ in Eq. (15).
The single-Q ordering (14) is stabilized by quantum spin
fluctuations, which are dominant for large enough U=jtijj;
while the triple-Q ordering (15) is stabilized by charge
fluctuations below some critical value of U=jtijj. For
completeness, Fig. 2(b) also shows the coplanar double-
Q ordering that is obtained when only one out of the three
sμ vectors is equal to zero in Eq. (13).
We next derive an effective field theory for the triple-Q

ordering. The local SOð3Þ order parameter is a rotation
matrix instead of the unit vector that describes collinear
(single-Q) ordering. The relevant homotopy groups are [8]

π1½SOð3Þ� ¼ Z2; π2½SOð3Þ� ¼ 0; π3½SOð3Þ� ¼ Z: ð17Þ

The normalized spin orientation on the four sublattices
can be parametrized as

Ω̂j ¼
R½n0j þ nbj þ L�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jn0j þ nbj þ Lj2

q ; j ¼ f1; 2; 3; 4g; ð18aÞ

n0j ≡
X
μ

eμχμj; nbj ≡
X
μ

eμbμχμj; ð18bÞ

where L determines the net magnetization of each unit cell,
R is an SOð3Þ matrix describing the global spin rotations
of the triad of sμ vectors, and bμ represents magnitude
fluctuations of the sμ fields. The mutually orthogonal unit
vectors eμ are chosen to point along the Cartesian axes
(e1 ¼ x̂, e2 ¼ ŷ, e3 ¼ ẑ), and the matrix χ is

χ ¼ 1ffiffiffi
3

p

0
BB@

1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

1
CCA: ð19Þ

The vector b belongs to 1=4 of the sphere S2, of radius
ffiffiffi
3

p
centered at c ¼ −ð1; 1; 1Þ: ðb − cÞ2 ¼ 3. The ground space
manifold of the classical limit of H̃J, defined by Eq. (13), is
obtained by setting L ¼ 0 in Eq. (18) and forcing the fields
R and b to be uniform. Note that the b fields continuously
connect the triple-Q ordering of (15) with double- and
single-Q ordering (14). These fluctuations are massless
for the pure classical H̃J model, whose order parameter

FIG. 2. (a) Single-Q collinear, (b) double-Q coplanar, and
(c) triple-Q noncoplanar ordering on the TL. (d) All-in–all-out
triple-Q ordering on the PL.
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manifold becomes SOð3Þ × S2=Z4. As we show below, H̃K
makes the b field massive, reducing the order parameter
manifold to SOð3Þ × Z2 [Z2 associated with the chiral
symmetry in (16)].
To first order in L and b, we have

Ω̂j ≈ Rfn0j þ nbj þ ½L − ðn0j · LÞn0j �g; ð20Þ

and the local magnetization is 2
3
RL. The continuum limit is

obtained by replacing Si with SΩ̂i in H̃ and implementing
the gradient expansion

Ω̂jðrþ δÞ ≈ Ω̂jðrÞ þ ðδ · ∇ÞΩ̂jðrÞ þ
1

2
ðδ · ∇Þ2Ω̂jðrÞ: ð21Þ

Here 1 ≤ j ≤ 4 is a sublattice index, and r is the real space
coordinate. Because the triple-Q ordering conserves parity,
the Hamiltonian contains only even powers of spatial
derivatives.
Replacing Eq. (21) into H̃J½Ω̂� and using Eq. (20), we

obtain H̃J½Ω̂� in terms of the R, b, and L fields. Our key
observation is that the continuum limit of the classical
Hamiltonian is

H̃J½Ω̂� ≈
S2ðJ2 − 2J3Þffiffiffi

3
p

X
μ0¼1;2;3

Z
d2r½ð∂aReμ0Þ · ð∂aReμ0Þ�

þ 128S2J2
9

ffiffiffi
3

p
a20

Z
d2rL2; ð22Þ

along the surface J1 ¼ 3J2 (a0 is the lattice constant). The
L mode is massive at this level, while the b mode becomes
massive upon including the four-spin interactions:

4S4K

3
ffiffiffi
3

p
a20

Z
d2r

�
b2 þ 2

3

X
μ<ν

ðbμ − bνÞ2
�
: ð23Þ

Based on our previous discussion, the low-energy sector
of H̃J þ H̃K provides a 2D realization of the PCM (i.e., it
has an emergent ½SUð2Þ × SUð2Þ�=Z2 ≃ SOð4Þ chiral sym-
metry) on the fine-tuned parameter surface J1 ¼ 3J2. In
terms of the original lattice model, this emergent symmetry
corresponds to independent invariance under global spin
rotations (present in the microscopic model) and orbital
transformations connecting different sublattices, which are
not present in the microscopic model.
Our next step is to show that fine-tuning can be avoided

in magnets with cubic symmetry at the expense of adding
“compasslike” terms to the PCM, which couple the spatial
and spin variables but preserve the overall rotational
symmetry in the long wavelength limit (cubic anisotropy
appears only to fourth order in the momentum of the
excitations).
Three-dimensional case.—Nowwe move on to magnetic

orderings on the pyrochlore lattice (PL) [35]. We will again

consider a spin Hamiltonian HP ¼ HH þHB that is the
sum of an AFM Heisenberg model with NN, NNN, and
third-NN exchange constants fJ1; J2; J3g and a biquadratic
interaction between NN:

HH ¼
X
hiji

JijSi · Sj; HB ¼ K
X
hiji

ðSi · SjÞ2: ð24Þ

Like in the previous case, the classical ground state spin
configurations of HH are given by Eq. (13). The difference
is that the three ordering wave vectors are now 3D
reciprocal lattice vectors Qμ ¼

ffiffiffi
2

p
πeμ (our unit of length

is the distance between NN sites). In particular, the triple-Q
magnetic ordering now corresponds to the “all-in–all-out”
configuration depicted in Fig. 2(d). Once again, this
configuration can be continuously connected with the
coplanar double-Q and collinear single-Q by changing
the relative magnitudes of the vectors sμ in Eq. (13)
(rotations of the b vector). Similarly to the previous case,
the role of the biquadratic interaction HB is to select the
triple-Q ordering, i.e., make the b fluctuations massive.
Given that the structure of the local order parameter is

identical to the 2D case, we can follow a similar procedure
to derive an effective field theory around the triple-Q all-in–
all-out ordered state. In this case, we get

HH½Ω̂� ≈
X
μνab

Z
d3r½Aδabδμν þ B1δμνδaμδbν

þ B2ð1 − δμνÞðδaμδbν þ δbμδaνÞ�∂aReμ · ∂bReν

þ 16S2ðJ1 þ 2J2Þ
9

ffiffiffi
2

p
a30

Z
d3rL2; ð25Þ

with μνab ¼ f1; 2; 3g, A ¼ ð ffiffiffi
2

p
S2ðJ2 − J3Þ=3a0Þ, B1 ¼

ðS2ðJ1 − 6J2Þ=6
ffiffiffi
2

p
a0Þ, and B2 ¼ ðS2ðJ1 − 2J2 − 4J3Þ=

12
ffiffiffi
2

p
a0Þ. Similar to the 2D case, the b mode becomes

massive upon the inclusion of biquadratic interactions [36]:ffiffiffi
2

p
K

3a30
S2
�
S −

1

2

�
2
Z

d3r

�
b2 þ 2

3

X
μ<ν

ðbμ − bνÞ2
�
: ð26Þ

Proceeding in the same way as above, we get the zero-
mode Hamiltonian

HH ≈ f0
X
μ

JμaJ
μ
a þ f1

X
a

JaaJaa þ f2
X
aμ

ðJaμJμa þ JaaJ
μ
μÞ;

ð27Þ
with f0¼B1þ2ðAþB2Þ, f1 ¼ 2B2 − B1, and f2 ¼ −2B2.
Were the coefficients B1;2 to vanish, nothing would change
in the above theoretical framework, except the number
of spatial coordinates must be 3. The terms proportional
to B1;2 mix the coordinate and spin indices, reducing the
overall coordinate-isospin symmetry from spherical to
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cubic [37]. Nevertheless, given that cubic anisotropy
appears only to fourth order in the momentum of the
quasiparticles, the low-energy excitation spectrum of
Eq. (25) remains identical to the one of the PCM (a
degenerate triplet of Goldstone modes with renormalized
velocity), implying that the inclusion of the B1 and B2

still preserved the overall rotational symmetry in the long
wavelength limit.
A natural consequence of our derivation is that stable

skyrmion configurations can be generically induced in
noncollinear magnets. The stability condition of the
zero-angular-momentum mode is granted by the four-
derivative terms in the gradient expansion (not included
in our derivation), which are always present in real magnets
and play the role of the Lorentz invariant quartic term in
Skyrme’s model [38]. This can be verified by splitting the
energy into the contributions coming from the two- and
four-derivative terms, E ¼ E2 þ E4, and applying a scale
transformation: x → λx [40]. The energy then becomes
eðλÞ ¼ E2=λþ λE4, implying that there is an optimal
skyrmion size (the one satisfying E2 ¼ E4) and that this
size is of the order of

ffiffiffiffiffiffiffiffiffiffiffi
g4=g2

p
, where g2 (g4) is the effective

coupling constant in front of the two- (four-) derivative
term. It is then clear that g2 (stiffness of the nonlinear sigma
model) must become much smaller than g4 for the sky-
rmion radius to be much bigger than the lattice parameterffiffiffiffiffiffiffiffiffiffiffi
g4=g2

p
≫ a0. This condition can be achieved in the

proximity of a Lifshitz point (commensurate to incom-
mensurate transition). This point can be reached by
increasing J3 in the two models considered in this Letter
[e.g., for the triangular lattice case, the Lifshitz point is at
J3 ¼ J2=2 according to Eq. (22)].
In summary, noncollinear magnets can produce locally

stable 3D skyrmions under quite general conditions.
Moreover, like in the case of the 2D baby skyrmions
[41–46], 3D skyrmion crystals are also expected to occur
beyond the Lifshitz transition. These 3D skyrmion crystals
are the magnetic counterpart of the neutron crystal solutions
found by Klebanov in the context of neutron stars [47].
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