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We show that electrons undergoing a two-particle collision in a crystal experience a coordinate shift that
depends on their single-particle Bloch wave functions and derive a gauge-invariant expression for such a
shift, valid for arbitrary band structures and arbitrary two-particle interaction potentials. As an application
of the theory, we consider two-particle coordinate shifts for Weyl fermions in space of three spatial
dimensions. We demonstrate that such shifts in general contribute to the anomalous Hall conductivity of a
clean electron liquid.
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Introduction.—Studies of quantum corrections to semi-
classical transport in itinerant systems have become an
interdisciplinary research direction, encompassing the phe-
nomena of the anomalous Hall effect [1], the chiral
anomaly in particle physics [2,3] and condensed matter
physics [4,5] contexts, and static and dynamic chiral
magnetic effect in quark-gluon plasma [6–12] and metals
with nontrivial band geometry [13–23]. Most of the studies
on the above subjects focused on the single-particle
properties of the systems of interest, exploring the effects
of band geometry on observable properties (see Ref. [24]
for a comprehensive review of quantum corrections to the
semiclassical dynamics in crystals). There are several
exceptions to this rule: for instance, in Refs. [25,26], the
effect of single-particle coordinate shifts [27] on collisions
of distinguishable species of electrons was considered, and
Refs. [28,29] considered how geometry of single-particle
wave functions affected two-particle collisions of chiral
fermions interacting via a local interaction in free space.
Naturally, Refs. [28,29] relied heavily on the Lorentz (and
hence rotational) invariance present in the problem.
In this Letter, we consider coordinate shifts of two

colliding indistinguishable electrons—two-particle coor-
dinate shift—in a generic crystalline band structure, inter-
acting via a generic two-particle potential, without the
convenience of rotational or full Lorentz symmetries. The
problem is motivated by advances in materials physics,
which have yielded itinerant electronic systems of a purity
level sufficient for the electronic liquid to demonstrate
hydrodynamic behavior [30–34]. These experimental
advances triggered theoretical studies of electronic flow
in the hydrodynamic regime [35–38].
In the hydrodynamic regime, the transport properties of

the electronic liquid are determined by the collisions
between carriers rather than those with phonons or impu-
rities. Therefore, the study of how the quantummechanics of
electrons in crystals affects such collisions, and manifests

itself in the hydrodynamic properties, is of fundamental
importance. In this work, we consider how the quantum-
mechanical effects, in particular the geometry of Bloch
functions in the Brillouin zone, manifests themselves in the
anomalous transport properties: the hydrodynamic anoma-
lous Hall effect.
It is well known that one-particle coordinate shifts in

electron-impurity and electron-phonon collisions are
related to the band geometry of the material [39] and play
an important role in the transport and optical properties of
crystalline materials (see Refs. [40,41] for a review). While
the early works on this subject were carried out several
decades ago [27,42,43], the modern band theory of the
side-jump process was formulated fairly recently [39].
However, to the best of our knowledge, collisional two-
particle shifts in crystals have not yet been considered.
Below we will show that two-particle collisional coordinate
shifts are a new type of quantum-mechanical correction to
the semiclassical electron dynamics, distinct from the
single-particle ones for indistinguishable particles, and that
they make a contribution to the anomalous Hall effect in the
hydrodynamic regime.
Two-particle coordinate shift.—Consider a collision of

two electrons in a crystal. Physically, the collision should
be thought of as that of two electronic wave packets,
centered around certain quasimomenta, which belong to
some bands in the electronic band structure. The location of
a single electron in the unit cell of a crystal in general
depends on its quasimomentum; hence the change of the
quasimomenta upon the collision will lead to a redistrib-
ution of the wave packets in the unit cell: the “center of
mass” coordinates of the two colliding particles shift
upon collision. In the case of collisions of distinguishable
particles—e.g., electrons with impurities or electrons
with phonons—one can trace the initial and final quasi-
momenta of the colliding electron and define the corre-
sponding coordinate shift of the electron, which, for weak
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centrosymmetric impurity potential, depends only on the
initial and final Bloch states.
In the case of a two-electron collision, the preceding

logic applies inasmuch as that the collision must be
accompanied by some coordinate shift. However, particle
indistinguishability makes it impossible to decide which
initial state the electrons in the final states came from, and it
is clear that the total displacement of the two-electron
system—the two-particle coordinate shift—cannot be
reduced to any combination of single-particle shifts. In
fact, individual coordinate shifts are not defined under such
circumstances in general, in the sense that there is noway to
express them within the second quantization formalism.
To describe such two-particle coordinate shifts, we

define the Hamiltonian Ĥ of electrons in a crystal as
Ĥ ¼ Ĥ0 þ V̂, where the first and second terms are the
Hamiltonians of noninteracting Bloch electrons and the
electron-electron interaction, respectively. The single-
particle eigenstates of Ĥ0 are described by Bloch functions
ψnp that have the usual form of

ψnpðrÞ ¼
1ffiffiffiffi
N

p eiprunpðrÞ; ð1Þ

where unpðrÞ is a spinor periodic with respect to lattice
translations, N is the number of unit cells in the crystal, and
we set ℏ ¼ 1, which will be assumed from here on. The
corresponding single-particle energies will be denoted with
εnp. In what follows we assume that the spin degeneracy is
lifted in the band structure, since the main applications
of the theory, e.g., Weyl fermions physics or anomalous
Hall effect, all correspond to broken time-reversal or
inversion symmetries in materials with strong spin-orbit
coupling.
For notational convenience, we will combine the band

index of the Bloch state n and its quasimomentum p into a
single index ðn; pÞ, which will be denoted with indices i or
f whenever it is necessary to emphasize whether a state is
the initial or final one, or index l if such identification is
not important. In the basis of Bloch eigenstates, the single-
particle and interaction parts of the Hamiltonian are
given by

Ĥ0 ¼
X
l

εla
†
lal;

V̂ ¼ 1

2

X
l1l2l3l4

vl1l2;l3l4a
†
l1
a†l2al3al4 : ð2Þ

In this work, we assume the absence of umklapp processes,
which implies that the matrix element of the interaction
Hamiltonian contains a momentum-conserving factor
δp1þp2;p3þp4 .
In what follows, we consider collisions of electrons

described by Hamiltonian Eq. (2), assuming that V̂ can be

treated in the Born approximation. Neglecting the Fermi
liquid effects allows us to derive the coordinate shift for the
two electrons considering the collision in vacuum. Indeed,
we will see that the shift is determined only by the single-
particle wave functions of the colliding electrons, while the
presence of other electrons can only lead to Pauli blocking
of the collision itself, or provide RPA-type renormalization
of the interaction matrix element. Both effects do not bring
any essential physics into the consideration of the coor-
dinate shift.
The process of semiclassical scattering of two electrons

described by Hamiltonian Eq. (2) can be visualized as
the motion of two wave packets, with their momenta
centered around the initial states i1 ¼ ðk1; n1Þ and i2 ¼
ðk2; n2Þ at time t → −∞, which scatter into wave packets
with momenta centered around states f1 ¼ ðp1; m1Þ
and f2 ¼ ðp2; m2Þ at t → þ∞. The two-particle state
corresponding to the incoming pair of particles can be
written as

jψ ini ¼
X
q1;q2

wðq1; q2Þa†l1a
†
l2
j0i; ð3Þ

with l1 ¼ ðq1; n1Þ and l2 ¼ ðq2; n2Þ, and the antisymmet-
ric,wðq1; q2Þ ¼ −wðq2; q1Þ, wave packet amplitude restricts
q1 and q2 to the vicinity of quasimomenta k1 and k2 in bands
n1 and n2. For well-separated in momentum space electrons
in the initial state, the wave packet amplitude can be written
as wðq1; q2Þ ¼ ½wk1ðq1Þwk2ðq2Þ − wk1ðq2Þwk2ðq1Þ�=

ffiffiffi
2

p
,

where individual amplitudes wkðqÞ are functions of q
centered around k, and normalized according to
jwkðqÞj2 ¼ 1.
The evolution of the wave packet Eq. (3) under the

action of the interaction Hamiltonian, V̂ of Eq. (2), is
described by standard quantum mechanics, and is analo-
gous to the considerations of Ref. [39]. The details will be
presented elsewhere [44]. Here we only mention that the
expectation value of the “total coordinate” R ¼ r1 þ r2 of
the colliding electrons before and after the collision can be
written as

Rðt → −∞Þ ¼ vi1tþ vi2tþ rin;

Rðt → þ∞Þ ¼ vf1tþ vf2tþ rout;

where the group velocities of electrons in the initial
and final states are denoted with v with appropriate
subscripts. The two-particle collisional coordinate shift is
defined as

δrf1f2i1i2
¼ rout − rin; ð4Þ

for which we obtain [44]
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δrf1f2i1i2
¼ ihuf1 j∂p1uf1i þ ihuf2 j∂p2uf2i
− ihui1 j∂k1ui1i − ihui2 j∂k2ui2i
− ð∂p1 þ ∂p2 þ ∂k1 þ ∂k2Þ argVf1f2;i1i2 : ð5Þ

The matrix element of the interaction Hamiltonian is
given by Vf1f2;i1i2 ¼ hf1f2jV̂ji1i2i. Equation (5) is the
central result of this work; it provides a gauge-invariant
expression for the two-particle coordinate shift, in the sense
that it does not depend on the momentum-dependent phase
choice for the Bloch wave functions.
It is straightforward to show that for distinguishable

particles the two-particle shift reduces to the sum of the
usual single-particle shifts for each particle species. That is,
if states i1, f1 belong to particles of type 1, and states i2, f2
belong to those of type 2, the total coordinate shift becomes

δrf1f2i1i2
¼ δrð1Þf1;i1

þ δrð2Þf2;i2
; ð6Þ

where δrð1;2Þf;i are the usual single-particle shifts for particles
of types 1 and 2 (see Ref. [41] for a review).
Coordinate shifts for Weyl fermions.—To illustrate the

obtained result, we choose a model of fermions often
considered in literature, that of a single species of Weyl
fermions in free space, with local interaction. The free-
fermion Hamiltonian for this model is

Ĥ0 ¼
X
p

a†p;sðvpσÞss0ap;s0 ; ð7Þ

where v is the speed of fermions, σ is a vector of Pauli
matrices, and s, s0 are the spin indices.
To apply Eq. (5) to collisions of fermions described by

Hamiltonian Eq. (7), we specialize to the “particle” band,
εp ¼ vp, in which the spinor describing a particle with
momentum p is given by

jupi ¼
�

cos θp
2

sin θp
2
eiϕp

�
; ð8Þ

where θp and ϕp are the standard spherical angles of vector
p. Written in the basis of states Eq. (8), the interaction
amplitude, Eq. (2), for the particle band becomes

vk1k2;p1p2 ¼
λ

V
huk1 jup2ihuk2 jup1iδk1þk2;p1þp2 ; ð9Þ

where λ is the strength of the local interaction, and V is the
volume of the crystal.
The interaction matrix element that defines the two-

particle coordinate shift, Eq. (5), is given by

Vk1k2;p1p2 ¼
λ

V
ðhuk1 jup1ihuk2 jup2i

− huk1 jup2ihuk2 jup1iÞδk1þk2;p1þp2 ; ð10Þ

and has proper antisymmetry with respect to the inter-
change of initial or final particles.
Defining a unit vector ep ¼ p=p, we obtain the coor-

dinate shift for the ðp1p2Þ → ðk1k2Þ collision:

δrk1k2p1p2 ¼ −
v
2

�
1

εk1
−

1

εk2

�
ek1 × ek2

1 − ek1 · ek2

þ v
2

�
1

εp1

−
1

εp2

�
ep1 × ep2

1 − ep1 · ep2
: ð11Þ

Note that this expression vanishes when the energies of
the colliding electrons are equal to each other before and
after collision. This implies that the two-particle shifts for
Weyl fermions, unlike the single-particle ones, vanish at
zero temperature, when there is no thermal cloud around
the Fermi surface.
We would like to emphasize that Eq. (11) gives the total

coordinate shift for the system of the two scattering Weyl
fermions. One must note that in Ref. [28], individual
coordinate shifts were defined for Weyl fermions interact-
ing via a local interaction in free space in a reference frame
where the collision is head-on. Using appropriate Lorentz
transformations, one can then consider the collision in any
reference frame. To see the relation between the results of
this Letter and those of Ref. [28], we note that the sum of
the individual shifts for scattered particles defined in
Ref. [28] corresponds to the first term in Eq. (11) above,
while the second term is trivially zero due to the collision
being head-on (ep × ep0 ¼ 0). Further, for a head-on colli-
sion of particles with zero-range interaction and zero
impact parameter, as in Ref. [28], the individual shifts
can be counted from the collision point, and thus are
physically well defined.
All these considerations break down for a collision in a

crystal, and for a finite-range interparticle interaction
potential. Indeed, the crystal represents a preferred refer-
ence frame, in which the Hamiltonian Eq. (2) of the
colliding particles is given, eliminating the Lorentz invari-
ance; any finite-range interaction potential allows non-
zero impact parameters even for a head-on arrangement
of the colliding particles momenta, making individual
shifts undefined due to indistinguishability of particles.
Therefore, in the realm of solid state physics, Eq. (5)
appears to be the only statement one can make regarding
the net shift of the system of two colliding particles. The
presence of a crystal also makes the collision effectively a
three-body one, one assumed infinitely massive; this makes
sure that the net collisional shift of the two-electron
system’s center of mass does not violate basic physical
principles.
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Application to the anomalous Hall effect.—Two-particle
coordinate shifts have a twofold effect on electron kinetics,
much in the same way it happens with single-particle shifts
upon impurity scattering: they modify the expression for
the electric current and lead to the appearance of an
additional generation term in the Boltzmann equation,
stemming from the collision integral not being nullified
by the equilibrium distribution function in the presence of
an external electric field [41].
The contribution to the electric current associated with

the accumulation of two-particle shift events can be
obtained from the Fermi golden rule considerations.
Indeed, consider l1l2 → l3l4 scattering events, which
happen at the rate of Wl3l4

l1l2
. Since the pair of electrons

gets shifted by δrl3l4
l1l2

in such events, they contribute

eWl3l4
l1l2

δrl3l4l1l2
to the electric current. Summing over all

initial and final states, and including standard factors
associated with the Fermi statistics, we obtain the following
generalization of the “shift accumulation” current jshift to
the present situation:

jshift ¼ 1

4
e

X
l1l2l3l4

Wl3l4
l1l2

δrl3l4l1l2
ð1 − fl3Þð1 − fl4Þfl1fl2 :

ð12Þ

The factor of 1=4 removes double counting of initial and
final state pairs, which occurs due to indistinguishability of
particles. Note also that the expression for the shift
accumulation current does not include the reverse proc-
esses, l3l4 → l1l2: due to the summation over all four of
initial and final momenta in Eq. (12), inclusion of such
processes would constitute double counting. The antisym-
metry of δrl3l4l1l2

with respect to the interchange of initial and

final states, the scattering rate Wl3l4
l1l2

being symmetric,
guarantees that current Eq. (12) vanishes in equilibrium.
For linear transport, one can directly relate the shift

accumulation current Eq. (12) to the deviation of the
distribution function from the equilibrium one, f0ðεlÞ,
defined via

fl ¼ f0ðεlÞ − ϕl
∂f0ðεlÞ
∂εl ; ð13Þ

where ϕl is now a smooth function of energy and
momentum, the sharp energy dependence close to the
Fermi surface being contained in the derivative of f0ðεlÞ.
Noting that

∂f0ðεlÞ
∂εl ¼ −

1

T
f0ðεlÞ½1 − f0ðεlÞ�;

we obtain the final expression for the shift accumulation
current:

jshift ¼ e
2T

X
l1l2l3l4

Wl3l4
l1l2

δrl3l4l1l2
ð1 − fl3Þð1 − fl4Þfl1fl2ϕl1 :

ð14Þ

We now turn to the additional generation term in the
Boltzmann equation, which stems from the fact that the
work done by the electric field due to the shift during
the collision must be taken into account in the energy
conservation. This fact is taken into account by modifying
the energy-conserving δ function in the collision integral:

δðϵl3 þϵl4
−ϵl1

−ϵl2Þ→δðϵl3 þϵl4 −ϵl1 −ϵl2 −eEδrl3l4

l1l2
Þ:

As in the single-particle case [39], this means that in the
presence of the coordinate shifts the collision integral is not
nullified by the Fermi-Dirac distribution function.
Expanded to linear order in the external electric field E,
the electron-electron collision integral then contains an
effective generation term, −eEgl with gl, given by

gl1 ¼
1

2T

X
l2l3l4

Wl3l4
l1l2

δrl3l4l1l2
ð1−fl3Þð1−fl4Þfl1fl2 ; ð15Þ

which can be combined with the usual electric drive term in
the left-hand side of the kinetic equation for the stationary
nonequilibrium state:

eE

�
vl

∂f0ðεlÞ
∂εl þ gl

�
¼ IstðϕlÞ: ð16Þ

In this equation, IstðϕlÞ is the linearized collision integral,
which in general must contain electron-impurity and
electron-phonon contributions, necessary to reach a steady
state in the presence of an external electric field.
The kinetic equation (16) makes it clear that the

deviation from the equilibrium is created by both accel-
eration by E as well as two-particle coordinate shifts. The
corresponding changes in the distribution function,
Eq. (13), are given by

ϕv ¼ I−1st

�
eEvl

∂f0ðεlÞ
∂εl

�
;

ϕg ¼ I−1st ðeEglÞ: ð17Þ

The assumed presence of the electron-impurity and elec-
tron-phonon contributions to the collision integral ensures
that the inverse operator I−1st is defined for any generation
term in the left-hand side of the kinetic equation.
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Finally, the expression for the contribution to the
anomalous Hall effect (AHE) current due to the two-
particle coordinate shifts is given by

jAHE ¼ jshift þ jballistic; ð18Þ

where

jballistic ¼ −
e
V

X
l

vl
∂f0ðεlÞ
∂εl ϕg

l ð19Þ

and

jshift ¼ e
V

X
l

glϕv
l: ð20Þ

We used Eqs. (14) and (15) to write down the above
expression for jshift. One can show that the conductivity
tensor that defines the linear relationship between jAHE and
the electric field E is indeed antisymmetric, as appropriate
for the anomalous Hall effect. Expressions (15), (19), and
(20) are one of the central results of this work.
An illustration of a solution of the kinetic equation (16)

for the two-dimensional massive Dirac model will be
presented in a forthcoming publication [44]. Here we only
mention that the generation term due to two-particle
coordinate shifts, Eq. (15), conserves the particle number,
the total momentum, and the total energy of the electronic
liquid. This can be verified in the usual way [45] by using
Eq. (15), antisymmetry of δrl3l4

l1l2
, and symmetry of the

scattering rate Wl3l4
l1l2

with respect to the interchange of
initial and final pairs states. This fact can be shown to
ensure that the present mechanism does not contribute to
the transport coefficients for purely parabolic dispersion, as
expected.
Conclusions.—In this Letter, we have introduced the

notion of the two-particle collisional coordinate shift,
occurring in electron-electron collisions in crystals. The
expression for the shift, Eq. (5), is valid for arbitrary band
structure, and arbitrary interparticle interaction potential,
which can be treated in the Born approximation—a typical
assumption in the treatment of carrier collisions in semi-
conductors. We further showed that the two-particle shifts
make a contribution to the anomalous Hall effect in the
hydrodynamic regime.
While Eq. (5) was derived for particle collisions in

vacuum, its validity is more general. In particular, the
expression is valid also in many-particle systems, in which
all the other particles are treated as a “refractive medium”
for the two colliding particles, which, in the RPA class of
approximations, leads to the dependence of the effective
interaction matrix elements on the transferred energy. The
effective interaction, however, has to be treated in the Born
approximation. The RPA-type renormalizations of the

effective interaction can bring in a true many-body physics
into the problem of anomalous transport in hydrodynamic
electronic systems. Further investigation along this direc-
tion, as well as inclusion of the Fermi liquid effects,
represents an interesting and open theoretical problem.
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