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Theoretical studies of phase stability in solid materials with dynamic disorder are challenging due to the
failure of the standard picture of atoms vibrating around fixed equilibrium positions. Dynamically
disordered solid materials show immense potential in applications. In particular, superionic conductors,
where the disorder results in exceptionally high ionic conductivity, are very promising as solid state
electrolytes in batteries and fuel cells. The biggest obstacle in living up to this potential is the limited
stability of the dynamically disordered phases. Here, we outline a method to obtain the free energy of a
dynamically disordered solid. It is based on a stress-strain thermodynamic integration on a deformation
path between a mechanically stable ordered variant of the disordered phase, and the dynamically disordered
phase itself. We show that the large entropy contribution associated with the dynamic disorder is captured
in the behavior of the stress along the deformation path. We apply the method to Bi, O3, whose superionic &
phase is the fastest known solid oxide ion conductor. We accurately reproduce the experimental transition
enthalpy and the critical temperature of the phase transition from the low temperature ground state a phase
to the superionic  phase. The method can be used for a first-principles description of the phase stability of
superionic conductors and other materials with dynamic disorder, when the disordered phase can be

connected to a stable phase through a continuous deformation path.

DOI: 10.1103/PhysRevLett.121.225702

The prediction of phase stability of dynamically disor-
dered solid materials is a challenging problem for
theoretical materials science. This is largely because these
materials, despite displaying the characteristic time-
averaged long range order of a crystalline solid, are not
well described in the standard picture of atoms vibrating
around fixed equilibrium positions. Clear examples include
solids containing rotating molecular units and superionic
conductors (superionics). Superionics are materials that,
due to the dynamic disorder, have anomalously large ionic
conductivities of up to ~1 Scm™! [1]. This makes them
extremely suitable electrolytes for solid state batteries [2—5]
and solid oxide fuel cells (SOFC) [6,7]. Recently, they
have also shown promise in less obvious applications. For
instance, as thermoelectrics, since their extremely anhar-
monic lattice vibrations provide ultralow thermal conduc-
tivity [8,9], and as mechanocaloric materials, since the
superionic transition has a large associated entropy change
and the transition temperature, 7., can be tuned by an
external stress field [10-12].

In most applications, the limited stability of the supe-
rionic phase prevents these materials from living up to their
promise. The temperature range in which the superionic
phase is stable typically begins above the operational
temperature of the prospective application and is quite
narrow. The temperature induced transformation to the
superionic phase can either proceed as a discontinuous
solid-solid phase transformation (type I superionic
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transition), where Agl is the prototypical example, or as
a continuous increase in ionic conductivity within a
preexisting phase (type II superionic transition), such as
in fluorite structured materials, e.g., CaF, [1].

Dynamically disordered solids in general, and superionic
phases in particular, are stabilized by the large entropy
contribution associated with the dynamic disorder. This
makes the prediction of their phase stability using computa-
tional methods very challenging, in particular for first-
principles methods based on density functional theory
(DFT). State-of-the-art first-principles predictions of phase
stability typically rely on extracting free energies within a
phonon picture. This can either be done using standard
static phonon calculations, or using some phonon renorm-
alization scheme. Such schemes require the existence of
well-defined reference positions around which the atoms in
the crystal thermally vibrate. This is clearly not the case for
dynamically disordered mobile ions in superionic conduc-
tors. Thus, more advanced techniques, such as thermody-
namic integration (TI) [13,14], are needed. TI techniques
most commonly obtain the free energy of the real physical
system by integrating from an artificial model system
whose free energy is known. Such coupling constant
integration (CCI) type techniques have recently been
applied to study superionic water [15—18].

In this Letter we present an alternative TI-based route to
obtain the free energy of a dynamically disordered solid.
It relies on a DFT ab initio molecular dynamics (AIMD)
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stress-strain TT between the dynamically disordered phase
and a metastable ordered variant of the dynamically
disordered phase. It has advantages over CCI techniques
as it can connect two real phases, thus providing an upper
bound to the free energy barrier separating the phases and
explicitly revealing the entropy contribution that stabilizes
the dynamically disordered phase over the ordered variant.
To illustrate the method we chose the notoriously complex
Bi,O; system, whose superionic 6 phase has the highest
rate of ionic diffusion of all known solid oxides [7]. At
ambient conditions Bi,O5 crystallizes in the monoclinic «
phase, which transforms to the cubic superionic 6 phase
when heated above ~1003 K [19], which is stable up to the
melting point of ~1100 K. On cooling from the 6 phase, the
system normally does not return directly to the « phase, but
instead transforms into one of its metastable states. Most
commonly to the tetragonal # phase at ~920 K and less
often to the body centered cubic y phase [19,20]. The S
phase can be viewed as a closely related ordered variant of
the superionic 0 phase. A large body of experimental
research has been directed towards attempting to stabilize
0-Bi,0O; at lower temperatures, while simultaneously
retaining the high ionic conductivity, by methods including
chemical doping [19,21,22], nanoconfinement [23], and
thin film growth [24-26]. Several theoretical works have
investigated the ionic diffusion in 6§-Bi,O5; [27-29].
However, due to the difficulties of obtaining free energies
of superionic phases mentioned above, no first-principles
theoretical description of the phase stability exists to date,
leaving any attempt at stabilizing 6-Bi,O; without a firm
physical foundation. We perform a stress-strain TI between
the ordered metastable  phase and the disordered supe-
rionic & phase of Bi,0;. We explicitly show that the
stabilizing entropy of the superionic 0 phase is seen in
the behavior of the stress tensor on a deformation path
between the two phases. We further calculate the free
energies of the ordered a and f phases in the temperature
dependent effective potential (TDEP) [30,31] phonon
picture. The a- to d-phase transition is accurately repro-
duced, with both the temperature and the enthalpy of the
transition matching experiments very well.

All DFT calculations were performed in the framework
of the projector augmented wave (PAW) [32] method using
the Vienna ab initio simulation package (VASP) [33-35].
Exchange-correlation effects were treated using the PBEsol
[36] form of the generalized gradient approximation
(GGA). The Kohn-Sham orbitals were expanded in plane
waves with a kinetic energy cutoff of 600 eV. Supercells of
160 atoms for the o phase and 240 atoms for the f and &
phases were used. For these large supercells I'-point
sampling of the Brillouin zone was found to be sufficient
to provide high accuracy of the TI. The convergence
criterion for the electronic self-consistent iterations was
set to 107 eV. Born-Oppenheimer (BO) AIMD simula-
tions were performed in the canonical (NVT) ensemble.

The temperature was controlled by a Nosé-Hoover thermo-
stat using the default Nosé mass parameter as set by VASP
and a 2 fs time step. The temperature dependence of all
equilibrium lattice parameters was obtained from a set of
AIMD runs where the lattice parameters were iteratively
changed until the converged values of all components of the
Cauchy stress tensor, 6, were < 1 kBar.

Temperature dependent phonon dispersions and free
energies of the ordered @ and f phases were obtained
using the TDEP method [30,31]. TDEP uses forces and
atomic displacements from AIMD to construct the har-
monic potential that best reproduces the true BO energy
surface (see Supplemental Material [37] for details).

Quite generally for a rotationally invariant crystal, the
differential of the Helmholtz free energy, F = U — TS,
where U is the internal energy, T the temperature, and S the
entropy, can be written as [38,39]

dF({X,n},T) = =SdT + V(X)z:dn. (1)

Here, V(X) is the volume of an (arbitrary) reference
configuration X, # is the Lagrangian strain tensor, defined
with respect to X, and 7 is the thermodynamic, or second
Piola-Kirchoff (PK2) stress tensor. The operation “:” is a
contraction over both indices, i.e., T:dp = Zi,ﬂi/d’li/’-
From DFT based AIMD, we have access to the Cauchy
stress tensor o, which is related to the PK2 stress as
©=Ja 'ea””, where a is the deformation gradient and
J = det(a) (see Supplemental Material [37] for the details).

Equation (1) can be integrated at constant 7" to yield the
free energy difference, AF, between the reference con-
figuration X, described by a tensor h(X) defining the
supercell used in AIMD, and a configuration x described
by h(x) = ah(X). The general expression for a deforma-
tion path parametrized by 4 is derived in the Supplemental
Material [37] and reads

Oh(2)

AF(A) = /0 Ve (T () A ()

In the special case of interest for our present purposes,
h(A) is diagonal and we use a linear interpolation between
the reference (h°) and final (k') configurations, i.e., k(1) =
h° + A(h' — h°). In this case, Eq. (2) reduces to

Lo
AF() = A ' V(/l’)zgii(/l’)%dﬂ’. (3)

i

Practical use of Eq. (3) entails performing AIMD at a series
of configurations /(1) to obtain corresponding &(4) and
numerically evaluating the integral.

We note that the stress-strain TIs of Refs. [40,41] have
relied on formulas that are simplified special cases of
Eq. (2) and Haskins et al. [42] have, in an entirely different
way, derived the same general expression to study the phase
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stability in NiTi. Importantly, all the transitions investigated
with help of stress-strain TIs have so far been between
ordered structures. We will show how the stress-strain TI
can be used to study the transition between an ordered and a
heavily disordered phase.

The tetragonal unit cell of $-Bi,O5 can be transformed
into a representation of the cubic 6 phase by compressing
the ¢ axis and expanding the a and b axes to a state of zero

stress with a/c = /2. Since the lattice parameters of the
two phases are quite close, we perform the integration of
Eq. (3) in two steps; i.e., we write AF;_ 5 = AF| + AF,,
where the first term corresponds to the free energy change
when compressing the ¢ axis and the second term to the
change upon subsequent expansion of a and b.

A noticeable complication of the stress-strain TI is the
fact that the S phase is ordered, while the oxygen sublattice
is heavily disordered in the 6 phase. We should thus expect
that this disordering will set in somewhere along the
integration path. Careful consideration needs to be made
to ensure that thermodynamic equilibrium is reached at
each point along the path and that the stress along the path
is integrable. This would not be an issue given infinite
simulation time. In practice, however, this is a potential
problem since very long simulation times may be required
to capture the transition from order to disorder. To address
this issue we note that since the disorder is mediated by
oxide ion diffusion, we expect it to be promoted by
expansion and conversely, to some degree, suppressed
by contraction of the lattice. With these considerations
in mind we proceed with the TI for Bi,O3 at 900 K in the
following way. We initially run ~40 ps AIMD simulations
for 4 structures with the ¢ axis varying between its values in
the  and o phases, parametrized by 4,. This produces an
expected approximately linear decrease in o33 [43], and a
corresponding quadratic increase in the free energy, as
shown in Fig. 1. During these simulations the O sublattice
remains ordered.

We then start to expand the a and b axes towards the §
phase, this second path is parametrized by 4,. On the first
point along this expansion an AIMD simulation is run for
~150 ps. During this time, substantial disordering of the O
sublattice is observed, starting from around ~35 ps into the
simulation. Correspondingly, there is a large nonzero slope
of the O mean square displacement (MSD). The averaging
of the stress tensor is calculated starting from the AIMD
time step where a continuous rate of diffusion of the O ions
is observed; this is identified by a linear behavior of the
MSD as a function of time, see Supplemental Material [37]
for more details. Importantly, this disordering of the O
sublattice can be seen through the behavior of the stress.
Indeed, we find a decrease of ¢, and o,,, rather than the
expected increase, upon expanding the a and b axes,
explicitly due to the O sublattice disorder (see Fig. 1).
This can be understood as follows: Once the system is
distorted far enough away from the ordered B phase,
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FIG. 1. Bi,03 at 900 K. (a) The 2 x 2 x 2 supercell of $-Bi,O5
used in this work. The dashed lines show the primitive unit cell.
The solid black lines show the relation to the conventional fluorite
unit cell of §-Bi,O5. (b) Snapshot of atomic positions in the
heavily disordered superionic 6 phase. (c) Diagonal components
of the Cauchy stress tensor ¢ on the deformation path between the
p and the 6 phase. (d) Free energy and (e) internal energy
difference with respect to the  phase along the deformation path.

entropic effects make a disorder among the O ions,
mediated by diffusion, thermodynamically preferable.
The diffusion is, in turn, promoted by lattice expansion,
which means that the structure can lower its free energy by
expanding in order to further increase the disorder among
the O ions. A snapshot (atomic positions and velocities)
from this simulation, after the disorder has sat in, is then
used as initial structures for the subsequent simulations.
Four more simulations are performed with progressively
expanded a and b, with the final simulation corresponding
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to their values in the 6 phase. All three diagonal compo-
nents of the stress tensor are found to continuously increase
toward zero with increasing a and b, admitting values
within 1 kBar of 0 at the lattice parameters corresponding
to the 6 phase. This produces a corresponding decrease
of the free energy, with an extremum in the o phase. Two
additional simulations with 4; < 0 and 4, > 1 were finally
performed to reveal that both the # and 6 phases are real free
energy minima along the path, see Fig. 1.

Finally, to make sure that the O sublattice disorder does
not in fact set in earlier along the path, we performed
another ~110 ps of AIMD for the point corresponding to
A1 = 1. During the total ~150 ps of simulation time only a
couple of O ions are displaced from their positions in the
phase, i.e., no continuous diffusion, and the displacement
of these O ions has essentially zero effect on the stresses.

In the end, we find that the 5-Bi,Oz is ~6 meV/f.u.
more stable than -Bi, O3 at 900 K, with a very small upper
bound to the free energy barrier of ~2 meV/f.u.

We explicitly point out the important finding that the
entropic stabilization mechanism of a dynamically disor-
dered solid can be seen through the behavior of the stress
tensor on a deformation path from an ordered phase
towards the disordered phase. We see in Fig. 1(e) that at
the point where the disorder sets in, there is a corresponding
large increase in U, since the system is breaking out of its
low energy ordering. However, there is a simultaneous
decrease in F, due to the behavior of the stress, indicating
an even larger increase in entropy. Indeed, the § phase is
~120 meV /f.u. lower in energy than the & phase at 900 K.
This leaves an entropy difference of TAS ~ 126 meV/f.u.
between the § and 6 phase, to make up the ~6 meV/f.u. free
energy difference in favor of the 6 phase at this temperature.

We now use the TDEP method to obtain the free energies
of the ordered a and f phases. The usage of TDEP is crucial
since #-Bi,0j3 is dynamically unstable in a (quasi)harmonic
description [44]. The free energy difference is shown by the
blue circles in Fig. 2. At 300 K « is ~150 meV /f.u. more
stable than f. This free energy difference is reduced to only
~22 meV/f.u. at 900 K. At temperatures starting from
1050 K the O ions do not stay around their ideal positions
in the f phase but instead show substantial diffusion during
the simulation, indicating a spontaneous transformation
toward the disordered 6 phase. This indicates that the free
energy barrier between $ and § (as seen at 900 K in Fig. 1)
disappears somewhere between 900 and 1050 K, which
effectively makes the f phase dynamically unstable.

Combining the TDEP results and the stress-strain TI
(Fig. 1) at 900 K indicates that the a phase is favored by
~14 meV/f.u. compared to the & phase. In order to obtain
the temperature dependence of the free energy of the &
phase we use the standard expression

F(X7 T) F(X’ Tref) o /T U(T,> dT’
T Tref B T le '

(4)

ref
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FIG. 2. Free energy difference of the § phase (blue circles) and
0 phase (red squares) with respect to the a phase, obtained as
described in the text. The vertical line shows the temperature of
the a-6 transition.

where T, is some reference temperature (details are
provided in the Supplemental Material [37]).

The red squares in Fig. 2 give the obtained free energy
difference between the a and the § phase. At 1050 K it is
~8 meV/f.u. in favor of the & phase and the obtained
transition temperature (the vertical line in Fig. 2) of the a to
o transition, T,_s =~ 1010 K, is in excellent agreement with
the experimental value of ~1003 K. This close agreement
may look fortuitous considering the approximations
employed in our simulations, which include the approxi-
mate exchange-correlation treatment in DFT and the finite-
sized and defect-free supercells used in the AIMD simu-
lations. However, further validation of the results can be
obtained by investigating the transition enthalpy of the « to
o transition, given by the difference in the internal energies
of the o and 6 phase at T,_s. Our calculated transition
enthalpy is ~0.32 eV /f.u., which agrees very well with the
experimental value of ~0.31 eV/f.u. [20]. This is very
large for a solid-solid transition, which is a direct result of
the very high entropy associated with the extreme disorder
among the O ions in the superionic é phase. The fact that
our calculated transition enthalpy and transition temper-
ature agrees with the experimental values shows that we
capture the violent energy-entropy competition that gov-
erns the phase stability of dynamically disordered solids,
and we view this as a strong indicator of the validity of the
present method.

Let us briefly discuss the place of the § phase in the
polymorphism of Bi,O;. Experimentally, the 6 phase is
found to always persist to temperatures below 7',_s when
cooling. The transformation into the ff phase occurs at ~80 K
below T,_s. Figure 1(d) shows that the free energy barrier
between f and ¢ is very small. Since the -6 (and a-f) barrier
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is very likely much larger, the system will fall into the f free
energy minimum when cooling from §. Upon further cooling
the system eventually returns to the « phase.

Finally, we point out that the stress-strain TI between the
p and 6 phase can be straightforwardly applied also to
doped Bi,05. The relative stability of the f and 6 phases at
different dopant concentrations of e.g., Tm [21] appears to
be the crucial factor in stabilizing the & phase at low
temperatures. The application of the present method may
thus provide important physical insight, which could be
essential in designing new Bi,O5 based solid electrolytes.

In summary, we have outlined a method to obtain the free
energy of a dynamically disordered solid. The method is
based on a stress-strain TI from an ordered variant of the
disordered phase. We have shown that the stabilizing
entropy associated with the dynamic disorder is captured
in the behavior of the stress. Free energies of other ordered
polymorphs are obtained using the TDEP method. We have
applied this method to the superionic oxide Bi,O5. The
transition from the low temperature ordered a phase into
the highly disordered superionic 6 phase is accurately
reproduced, with both the temperature and the enthalpy
of the transition in excellent agreement with experiment.
The method can be applied to study the phase stability of
materials containing large degrees of dynamic disorder
where the disordered phase can be connected to an ordered
(real or artificial) stable system through a continuous
deformation path.
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