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We experimentally investigate the dynamic instability of Bose-Einstein condensates in an optical ring
resonator that is asymmetrically pumped in both directions. We find that, beyond a critical resonator-pump
detuning, the system becomes stable regardless of the pump strength. Phase diagrams and quenching
curves are presented and described by numerical simulations. We discuss a physical explanation based on a
geometric interpretation of the underlying nonlinear equations of motion.
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For several years, atomic quantum gases in optical
resonators have been successfully used to study basic
many-body physics with long-range interaction. Quantum
phase transitions, supersolid phases, and the realization of
synthetic gauge fields are some of the current topics of this
field [1–6]. While, so far, most experiments have been
performed with standing wave resonators, the specific
properties of ring resonators are now coming to the fore
again [7,8]. In contrast to standing wave resonators, in an
ideal ring resonator, the position of the nodes and antinodes
of an optical standing wave is not determined by endmirrors.
However, in the presence of atoms and with sufficiently
strong pumping power, this continuous symmetry can be
broken spontaneously. The associated instability was already
predicted in 1998 and interpreted as an analogy to the free-
electron laser [9]. The effect was also observed experimen-
tally more than a decade ago [10,11], but, only recently, was
it possible to record a complete stability diagram [12,13].
These latest experiments also confirmed a model that
interprets the instability as a generalization of the Dicke
phase transition [1,14,15]. Experiments with ring resonators
pumped simultaneously in both directions have not yet been
conducted. This Letter makes a first contribution in this
direction.
In a longitudinally pumped ring cavity, as shown in

Fig. 1, the prominent effect is an exponential instability that
is observed above a critical pump power: If some light is
present in the probe mode, the interference pattern between
the pump and the probe light generates a periodic optical
potential, which structures the initially flat atomic density
distribution. The resulting density grating efficiently dif-
fracts pump light into the probe mode. This, in turn,
deepens the optical lattice, and also, as a consequence,
the atomic density grating increases its contrast and so on.
During the process, momentum is constantly transferred
from the pump mode to the probe mode and the atoms
accelerate into the direction of the pump light (to the right
in Fig. 1). Parallel to the atomic motion, the Doppler effect
shifts the frequency of the diffracted probe light to lower

frequencies. In this work, we extend the scenario and inject
some light into the probe mode that has the same frequency
as the pump light. Together with the pump light, it forms a
stationary optical lattice that might force the atoms to rest
and suppresses the instability. Surprisingly, we find that
there is a critical detuning of the cavity relative to the pump
light. Above this detuning, the system is always stable.
Below the critical detuning, the system is still unstable for
large enough pump power. In this Letter, we experimentally
investigate this yet unknown “pinning transition” and
compare our observations with numerical simulations of
the nonlinear equations of motion. Furthermore, we present
a geometric interpretation of the equations, which reveals
the underlying physical mechanism.
The experimental setup in Fig. 1 is similar as described

in [12]; however, now, we use a much larger resonator with
a round trip length of 39 cm, a beam waist at the position of
the condensate of w0 ¼ 170 μm and a mode volume of
V ¼ 18.2 mm3. For s-polarized light, the decay rate for
the electric field amplitude in the resonator amounts to

FIG. 1. Experimental setup of a BEC placed in a high finesse
TEM00 mode of a ring resonator. Light from the pump mode
(green, s pol.) is scattered into the probe mode (red) by the atoms
and by coherent scattering at the mirror (here, represented by an
effective reflecting element labeled “reverse injection”). The
power in the probe mode is monitored by recording the probe
light that leaves the cavity through the input coupling mirror. It is
separated from the pump light with a Faraday isolator and
detected with an avalanche photodiode (APD).
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κ ¼ 2π × 5 kHz which is about three times smaller than the
recoil shift ωr ¼ 2ℏk2=m ¼ 2π × 14.5 kHz due to momen-
tum absorption of an initially nonmoving atom that scatters
a photon from a pump beam into the probe beam. Here, k
andm are the wave vector of the pump light and the mass of
the atom. For p-polarized light, we observe a three times
larger decay rate. The s-polarized forward propagating
TEM00 (Transverse Electromagnetic Mode) mode (“pump
mode”) is longitudinally pumped from one side with up to
6 mW from an amplified diode laser system at a frequency
ω detuned by Δa ¼ ω − ω0 ¼ −60 GHz relative to the
atomic transition frequency ω0 (D1 Line∶ 5s1=2, F ¼ 2 to
5p1=2, F ¼ 2). Part of the laser output is used to electroni-
cally stabilize the laser to the reverse propagating
p-polarized TEM10 mode [16] with a precision of about
2π × 200 Hz. Frequency and amplitude of the pump light is
controlled by an acousto-optical modulator. The pump
frequencyω can be tuned relative to the resonance frequency
ωc of the TEM00 mode over a range of Δc ¼ ωc − ω ¼
�10ωr. The power in the TEM00 pump mode and in the
counterpropagating TEM00 mode (probe mode) is monitored
by recording the light leaking out of the resonator mirrors
with sensitive avalanche diodes.
The pinning potential required to suppress the instability

beyond the critical detuning is very small such that we
don’t have to inject the probe mode externally, but rather
exploit coherent scattering of pump light into the probe
mode due to inhomogeneities in the mirror coatings. The
scattered light from the three mirrors interferes according to
their relative positions and to the wavelength of the light
[17]. The total mirror scattering can be varied up to a factor
of 3 by controlling the position of one of the mirrors with a
piezoelement. In the experiment, the total mirror scattering
rate κs ¼ κ

ffiffiffi
ε

p
is determined for each cycle by recording the

resonant power ratio ε of the pump and the probe mode
right before the atoms are loaded into the cavity. The
magnetically trapped Bose-Einstein condensate (BEC) of
87Rb atoms is placed at the intensity minimum in the center
of the TEM10 mode where the atoms are least affected by
the locking light. During preparation of the condensate, the
laser beams are switched off and held at one fixed
frequency for about 20 s. Once the condensate is in place,
the locking is reactivated within 300 ms and the pump light
is then ramped up to a final value within 50 μs, slow
enough to avoid ringing of the high finesse resonator. After
a holding time of 1.5 ms, the atoms are released from the
trap and the population of the momentum states are derived
from absorption images after 35 ms of ballistic expansion.
Data are taken from 20 000 experimental cycles for various
cavity pump detunings Δc and photon numbers japj2 in the
pump mode. The data are post selected according to the
value of the ratio R ≔ κs=ð2U0NÞ for the specific cycle.
The denominator contains the total number of atoms N
and the single photon light shift U0 ¼ g2eff=Δa with the
coupling constant geff ¼ ðωd2=6ℏε0VÞ ¼ 2π × 19 kHz,

the dipole moment of the atomic transition d, and the
permittivity of free space ε0. The ratio R turns out to be the
relevant parameter to specify the strength of the pinning
potential (see theory part below). Figure 2 shows the
observed population jc0j2 of the zero momentum state in
the case of large mirror scattering (R ¼ 0.15), a mean atom
number in the BEC of N ¼ 1.8 × 105 and a atomic density
of 5.7 × 1012 cm−3. The detuning Δe ¼ Δc þU0N plotted
along the horizontal axis is corrected for the index of
refraction due to the atoms. The blue area, where the system
is unstable and almost all atoms are excited into higher
momentum states, is clearly separated from the stable
regime where at least half of the population jc0j2 persists.
For Δe ¼ −ωr, the critical pump photon number for
entering the unstable regime is smallest since light scattered
from the initial condensate is recoil shifted by one ωr. For
Δe < −ωr, the phase boundary between the stable and the
unstable regime follows the prediction of a numerical
simulation which ignores the pinning potential (solid line
in the left and right subplots). Evidently, the pinning
potential has only little effect in this regime. This is
because at threshold, the system jumps from a homo-
geneous superfluid state directly into a state where the
atoms form a density grating that moves with a finite start
velocity [12]. In the reference frame of the moving atoms,
the pinning potential averages out and has no effect. On the
contrary, for positive detuning, the atoms form a stationary
density grating which can be seeded efficiently by the
pinning potential. In fact, the observed phase boundary
steeply increases in this regime and asymptotically
approaches a vertical line positioned at a critical detuning
of Δ0 ≃ 0.7ωr (dashed line in the left and right subplots).
A numerical simulation, which includes pinning, reprodu-
ces this behavior (right subplot).
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FIG. 2. Phase diagram. Population of the zero momentum
state after 1.5 ms of interaction with the light in the resonator
for various photon numbers in the pump mode and cavity pump
detuning. For negative detuning, the experimental observations
(left subplot) are well described by the phase boundary derived
from a numerical simulation that does not include the pinning
potential (solid line). The simulation shown in the right subplot
includes the pinning potential. The dashed line indicates the
critical detuning within the limit of strong pumping according
to Eq. (5).
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The theoretical analysis of the experiment describes the
light in the pump mode and the probe mode by the field
operators Âp ¼ âpeikz and Â ¼ âe−ikz. The atomic matter
field ψ̂ ¼ P

ĉne2inkz is expanded into momentum eigen-
states, separated by 2ℏk, which is the momentum
transferred to the atoms by scattering a single photon from
the pump mode into the probe mode. The atoms and the
light interact via the optical dipole potential Hint ¼
ℏU0

R
ψ̂þψ̂ðÂp þ ÂÞðÂþ

p þ ÂþÞdV. Mirror scattering cou-
ples the pump mode with the probe mode and forms the
pinning potential, Hp ¼ −ℏκsðÂpÂþ Âþ

p Â
þÞ. The equa-

tions of motion are derived from the Hamiltonian H ¼
H0 þHint þHp with H0 ¼

R ½ψþ( − ℏ2∇2=ð2mÞ)ψ þ
ℏΔcðAþAþ Aþ

pApÞ�dV. Since the chemical potential of
the condensate is much smaller than the recoil energy,
the small contributions due to atom-atom interaction are
neglected. In mean field approximation, operators are
replaced by their expectation values ap, a, and cn. Since
the power of the pump mode is electronically stabilized, we
set ap to be constant. Because only the relative phase
between a and ap is physically relevant, we also set
ap ¼ japj. For the equations of motion, one then gets [9]

_cn ¼ −in2ωrcn − iσðcn−1a� þ cnþ1aÞ; ð1aÞ

_a ¼ −ðκ þ iΔeÞa − iσ
X
n

c�ncn−1 − iκsjapj; ð1bÞ

with the coupling constant σ ≔ U0japj and the total
number of atoms N ¼ P

c�ncn. The finite cavity line width
is taken into account by adding the decay term −κa. The
simulations in Fig. 2 are based on Eqs. (1a) and (1b) with
the sum ranging from n ¼ −5 to n ¼ 5, since higher
momentum states have not been observed for the chosen
experimental parameters.
To gain further physical insight, we interpret Eqs. (1a)

and (1b) in the vicinity of the threshold. Higher momentum
states with jnj > 1 can then be neglected yielding

_c−1 ¼ −iωrc−1 − iσac0; ð2aÞ

_c0 ¼ −iσðac1 þ a�c−1Þ; ð2bÞ

_c1 ¼ −iωrc1 − iσa�c0; ð2cÞ

_a ¼ −iΔa − iσb − iκsjapj: ð2dÞ

Here, we introduce the complex detuning Δ ¼ jΔjeiδ ≔
Δe − iκ and the complex structure factor b ¼ jbjeiφb ≔
c�1c0 þ c�0c−1. Without mirror scattering, the population of
the zero momentum component jc0j2 remains undepleted
until the system becomes unstable. Thus, in previous work,
c0 was approximated as constant near threshold. The
equations then become linear and can be solved analytically

[18,19]. If mirror scattering is included, the resulting
optical lattice potential depletes the zero momentum
component even below threshold. Thus, c0 has to be kept
variable and the equations resume their nonlinear character.
Treating Eqs. (2a)–(2d) by linearization around the steady
state solutions ( _a ¼ _c0;�1 ¼ 0) is not successful since a
constant structure factor may exist, even if the coefficients
c�1;0 are time dependent. The stability diagram can still be
derived with the following strategy. In a first step, we solve
the first three equations with a ¼ jajeiφa being regarded as
a time independent parameter. The resulting linear eigen-
problem can then be solved straightforwardly. It has three
eigenstates, with one of them being a dark state that does
not couple to the light field. The modulus of the structure
factor for the two other states can be calculated to be

B ¼ 1ffiffiffi
8

p A=Asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jAj2=A2

s

p : ð3Þ

Here, we introduce the normalized strength of the structure
factor B ≔ jbj=ð2NÞ, the normalized amplitude of the
light mode A ≔ jajjΔj=ð2NσÞ and the saturation parameter
As ≔ jΔjωr=ð2

ffiffiffi
8

p
Nσ2Þ. For both states, the structure

factor is time independent and saturates at a maximum
Bm ≔ 1=

ffiffiffi
8

p
as As approaches zero for strong pumping.

The two states differ in the limit of vanishing a, where the
population jc0j2 approaches either zero or N. Thus, we
ignore the first case since, in the experiment, all atoms are
initially in the condensate. The calculation shows that, for
the second case, the phases of the structure factor and the
light field are equal, φb ¼ φa. In a second step, we
determine how, vice versa, a given structure factor leads
to a stable light field. Setting _a ¼ 0 in Eq. (2d) yields

A2 þ B2 þ 2AB cos δ ¼ R2: ð4Þ

In Fig. 3, Eqs. (3) and (4) are plotted. Equation (4) forms
an ellipse tilted by 45°. Its long axis varies between 2R
(circle) for Δe ¼ 0 and infinity for Δe ≫ κ. Equilibrium
states exist at the intersection points of both curves. The
stability of equilibrium points are determined by reading,
from the diagram, how a given field Ai results in a structure
factor B (vertical arrows) and how the so determined B
generates a new light field Aiþ1 (horizontal arrows). By
repeating this sequence, the resulting series Ai converges
for stable equilibrium and diverges, otherwise. For small
detuning (left subplot) and weak pumping (saturation
curve 1) one finds a single point of stable equilibrium
(indicated by “s”). For stronger pumping, the point moves
to smaller A and eventually becomes unstable (saturation
curve 2, “u”). Without condensate depletion [neglecting the
second term in the square root of Eq. (3)] the system
becomes unstable for As ¼ 1=

ffiffiffi
8

p
which reproduces the

threshold behavior found in previous models [12,18,19].
For large detuning, the stable point remains stable even for

PHYSICAL REVIEW LETTERS 121, 223601 (2018)

223601-3



large pumping. This is true for arbitrary pump strength only
if the maximum of the ellipse R= sinðδÞ, exceeds the
maximum value of the structure factor Bm (dashed line).
This condition determines the critical detuning sinðδ0Þ ¼
R=

ffiffiffi
8

p
. After replacing the above definitions, the critical

detuning, defining the vertical phase boundary in the limit
of strong pumping, reads

Δ0

κ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8

�
2U0N
κs

�
2

− 1

s
: ð5Þ

It depends on the strength of the pinning potential κs via the
ratio 1=R ¼ 2U0N=κs. Compared to this analytical expres-
sion, numerical analysis shows a shift of the threshold to
smaller detunings for lower pumping strengths. We tested
this relation by recording the phase boundary for various
mirror scattering κs and atom number N. The phase

boundary is detected by sweeping the detuning Δe from
large to small values within 1 ms, while the photon number
in the pump mode is electronically stabilized to a constant
value of japj2 ¼ 4 × 106 (inset in Fig. 4). While sweeping,
the power in the probe mode increases until, eventually, the
threshold is reached. We identify the critical detuning Δ0 at
the edge, where the power in the probe mode drops quickly,
and the system becomes unstable. By repeating the experi-
ment for various values of NU0=κs, we obtain the curve in
the main graph of Fig. 4. The observations (black dots), the
simulation (red dashed line), and the analytic expression
[Eq. (5), blue line] are in reasonable agreement. In the
absence of a pinning potential, previous theoretical models
[18] predict strict threshold behavior only for lossless
cavities. If losses are included, the threshold smears out
and the system becomes unstable even for infinitesimally
low pump power. Our observations, however, support a
physical picture (Fig. 3) that also predicts strict threshold
behavior for lossy cavities even in the limit of vanishing
injection (R → 0).
In summary, we have investigated an atomic Bose

Einstein condensate in an optical ring resonator with
additional pinning potential. A stable phase was identified
above a critical cavity pump detuning. The phase boundary
is defined by the competition of the pinning potential and
the optical potential generated by the atoms. The obser-
vations are quantitatively described by simulating the
nonlinear equations of motion, including depletion of the
condensate. A geometric interpretation is introduced to
determine equilibrium and stability of the system and an
analytic expression for the phase boundary is derived in the
limit of strong pumping. By seeding the probe mode, the
transition from a ring geometry to a standing wave
geometry can be explored as in recent work with a
condensate replaced by a nanomembrane [20]. More work
is required to understand the role of the two additional
points of equilibrium which appear above the critical
detuning. Also unclear is the classification of the phase
transition, quantum fluctuations near threshold, and pos-
sible metastability [21].
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