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Lattice gauge theories are fundamental to our understanding of high-energy physics. Nevertheless, the
search for suitable platforms for their quantum simulation has proven difficult. We show that the Abelian
Higgs model in 1þ 1 dimensions is a prime candidate for an experimental quantum simulation of a lattice
gauge theory. To this end, we use a discrete tensor reformulation to smoothly connect the space-time
isotropic version used in most numerical lattice simulations to the continuous-time limit corresponding to
the Hamiltonian formulation. The eigenstates of the Hamiltonian are neutral for periodic boundary
conditions, but we probe the nonzero charge sectors by introducing either a Polyakov loop or an external
electric field. In both cases we obtain universal functions relating the mass gap, the gauge coupling, and the
spatial size, which are invariant under the deformation of the temporal lattice spacing. We propose to use a
physical multileg ladder of atoms trapped in optical lattices and interacting with Rydberg-dressed
interactions to quantum simulate the model and check the universal features. Our results provide a path to
the analog quantum simulation of lattice gauge theories with atoms in optical lattices.
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Lattice gauge theories (LGTs) are fundamental to our
understanding of strongly interacting particles in high-
energy physics. Translating the success of quantum sim-
ulations with cold atoms in optical lattices [1] of systems
relevant to condensed matter physics, such as the Bose-
Hubbard model, to the quantum simulation of LGTs would
open the door to real-time and finite-density calculations,
which are beyond the realm of classical computations. An
important first step is to achieve this goal for models in one
space and one time (1þ 1) dimensions in a well-controlled
setting. While the dynamics of the Schwinger model,
quantum electrodynamics in 1þ 1 dimensions, has been
explored using a few qubit digital quantum simulation in a
system of trapped ions [2] or classical-quantum algorithms
on IBM quantum computers [3], the analog quantum
simulation of gauge theories with cold atoms requires
complex experimental settings. Existing efforts involve
mixtures of bosonic and fermionic atoms [4,5] or dipolar
interactions of cold molecules [6] and are still in progress.
In this Letter, we propose an experimental platform suited

to quantum simulate the Abelian Higgs model in 1þ 1

dimensions, the Schwingermodel with the electron replaced
by a complex scalar field. In particular, we envision probing
the universal features of this model via a “Polyakov loop
(PL),” a noncontractible Wilson loop wrapping around the
periodic Euclidean time. In gauge theories, the expectation
values of Wilson loops play a fundamental role, serving, for
example, as order parameters to discriminate confined and
deconfined phases of quarks and gluons in QCD. The
Polyakov loop itself is relevant in finite-temperature studies
[7]; however, its calculation at finite density with classical
computing methods is often plagued by sign problems.
In contrast to other approaches [4–6,8–17] and similar to

Ref. [2], we use a manifestly gauge-invariant formulation
[18] where Gauss’s law is inherently fulfilled. In addition,
we consider the limit [18] where the scalar self-coupling
becomes large and the Higgs mode decouples from the low-
energy theory. We are then left with a gauged O(2) spin
model with compact field integration. Fourier analysis
provides a discrete reformulation in agreement with
Pontryagin duality [19] and suitable for an analog quantum
simulation. For the experimental implementation, we
invoke a single atomic species in an optical lattice on a
multileg ladder and recently explored Rydberg-dressed
interactions in this platform [20], aiming at maximal
simplicity on both the theoretical and experimental side.
The remainder of the Letter is structured as follows. As a

first result, we show novel numerical finite-size scaling
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(FSS) results for the Polyakov loop. This is followed by the
derivation of the gauged O(2) spin Hamiltonian represent-
ing the Abelian Higgs model and the presentation of a
blueprint for its experimental implementation. We conclude
by outlining a strategy to benchmark the concepts of finite-
size scaling in the Ising model as a simpler experimental
setting, but with the essential experimental building blocks
present.
The remarkable FSS properties of the Polyakov loop in

the Abelian Higgs model are illustrated by the collapse of
24 data sets in Fig. 1. There are four different spatial sizes
Ns represented in the figure (Ns ¼ 4, 8, 16, and 32), and it
is possible to probe the critical behavior with systems of
modest spatial sizes. We first give some brief explanations
about these results and provide the details later in the text.
The FSS is related to the energy gap ΔE created by
inserting a Polyakov loop or by applying an external
electric field. When the gauge coupling g approaches zero,
we have an O(2) model whose universal properties are of
the Berezinsky-Kosterlitz-Thouless (BKT) type. The data
collapse can be interpreted as originating from a relevant
renormalization-group direction coming from the BKT
conformal fixed point. When the hopping parameters
exceed their critical value at the BKT transition, we have
infinite correlation length at infinite volume and ΔE ∝
1=Ns at finiteNs. Figure 1 indicates that when we turn on g,
NsΔE is a linear function of ðgNsÞ2 at small argument and
then a linear function of gNs at larger argument. The two
parts of Fig. 1 each contain 24 data sets with 12 from a
discrete Euclidean time Lagrangian, while the other 12 are
from the continuous-time Hamiltonian limit. It is remark-
able that the two calculations provide the same universal
functions. Ultimately, it is this equivalence between the two
formulations which enables the transfer of results from the
experimentally accessible Hamiltonian dynamics to the

Lagrangian formulation. Moreover, the FSS properties of
the Polyakov loop allow for a well-controlled benchmark of
an experimental implementation by transiting from small to
large system sizes.
The considered Abelian Higgs model is described by the

lattice path integral Z ¼ R
Dϕ†DϕDUe−S with action

S ¼ −βpl
X

x

X

ν<μ

Re½Ux;μν�

− κ
X

x

X2

ν¼1

½ϕ†
xUx;νϕxþν̂ þ ϕ†

xþν̂U
†
x;νϕx�: ð1Þ

The complex (charged) scalar field is ϕx ¼ eiθx on space-
time sites x and the Abelian gauge fields Ux;μ ¼ eiAμðxÞ on
the links from x to xþ μ̂. The electromagnetic tensor
Fμν ¼ ∂μAν − ∂νAμ appears when taking products of
gauge fields around an elementary square (plaquette) in
the μν plane. The notation for this product is Ux;μν ¼
ei½AμðxÞþAνðxþμ̂Þ−Aμðxþν̂Þ−AνðxÞ� and the gauge coupling enters
through βpl ¼ 1=g2. The hopping coefficient κ can be
asymmetric, and below we use κτ for the Euclidean time
direction and κs for the spatial direction.
The Fourier expansions of the Boltzmann weights lead to

expressions of the partition function in terms of discrete
sums of products of modified Bessel functions with integer
orders on each plaquette and each link of the square lattice.
The integer plaquette quantum numbers completely deter-
mine the integer link quantum numbers, which are the
difference of the neighboring plaquette quantum numbers
which can be interpreted as dual variables. Explicit for-
mulas and sign conventions are given in Ref. [18], where
we also show that the discrete tensor renormalization-group
(TRG) [21,22] approach and the standard Monte Carlo
approach give consistent numerical answers. The link
quantum numbers can be interpreted as matter charges
and their sum on the time links between two successive
time slices stay constant as time is increased and define a
conserved charge Q. When periodic boundary conditions,
or open boundary conditions with zeros taken on the
boundaries (00BC), are imposed for the gauge degrees
of freedom, the condition Q ¼ 0 is automatically enforced.
The Q ≠ 0 sectors can be probed by inserting a product

P, called the Polyakov loop, of gauge links in the Euclidean
time direction τ̂ with periodic boundary conditions:

P ¼
YNτ−1

n¼0

Ux�þnτ̂;τ̂; ð2Þ

inside the path integral. This is illustrated in Fig. 2.
Conventional Monte Carlo simulations and TRG calcula-
tions with a typical bond dimension of Dbond ≈ 40 provide
consistent evidence [23] that P decays exponentially with
the size of the time domain Nτ:

FIG. 1. NsΔE versus g2N2
s for the gap ΔE created by the

insertion of the Polaykov loop (lower set) or an external electric
field (10 boundary conditions, upper set). Open (filled) markers
represent Lagrangian (Hamiltonian) data. The choices of param-
eters, units, and methods for both of the 24 data sets are explained
in the text.
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hPi ∝ e−NτΔE: ð3Þ

hPi can be interpreted in terms of the free energy induced
by the inclusion of a static charge. A similar effect can be
induced by using asymmetric boundary conditions such as
1 on one side and 0 on the other side for the plaquette
quantum numbers. This situation can be interpreted as the
introduction of an external electric field and is denoted as
10BC in Fig. 1 and hereafter. With 00BC, translation
invariance is not exact and the results depend on the
location of the Polyakov loop x⋆. The x⋆ dependence
and the possibility of obtaining 10BC by moving x⋆ to the
boundary will be discussed in Ref. [23].
In order to connect the LGT calculations in the

Lagrangian formulation with quantum simulations using
the Hamiltonian formulation, we need to take the time
continuum limit. This is done [18] by taking κτ, βpl → ∞
while simultaneously taking κs, a → 0 (a is the temporal
lattice spacing) such that the combinations

U ≡ 1

βpla
¼ g2

a
; Y ≡ 1

2κτa
; X ≡ 2κs

a
ð4Þ

are kept constant. Note that X here is related to X̃ in
Ref. [18] by X ¼ ffiffiffi

2
p

X̃. In this limit, using the properties of
the Bessel functions, the Hamiltonian can be identified as a
quantum rotor model and reads

H ¼ U
2

XNs

i¼1

ðLz
i Þ2 þ

Y
2

X0

i

ðLz
iþ1 − Lz

i Þ2 − X
XNs

i¼1

Ux
i : ð5Þ

The sum
P0

i, taking 00BC into account, includes
ðLz

1Þ2 þ ðLz
Ns
Þ2. The operator Ux ¼ ðUþ þ U−Þ=2 with

the special type of ladder operators Uþ; U− defined by
U�jmi ¼ jm� 1i, where Lzjmi ¼ mjmi with plaquette
quantum numbers m ¼ 0;�1;�2;…. If we truncate at
jmjmax ¼ s, we call it a spin-s truncation even though it is

different from the rotation group representation used
in Ref. [24].
In the continuous-time limit, the introduction of the

Polyakov loop amounts to changing the Hamiltonian into

H̃ ¼ U
2

XNs

i¼1

ðLz
i Þ2 þ

Y
2

X0

i≠Ns=2

ðLz
iþ1 − Lz

i Þ2

þ Y
2
ðLz

ðNs=2Þþ1
− Lz

Ns=2
− 1Þ2 − X

XNs

i¼1

Ux
i ; ð6Þ

where we have assumed that the Polyakov loop is put on
the center of the lattice. The 10BC choice provides another
way to probe the Q ≠ 0 sector. This simply changes ðLz

1Þ2
in the second summation of Eq. (5) to ðLz

1 − 1Þ2.
The numerical continuous-time results were obtained

using the density matrix renormalization group (DMRG)
[25,26] to calculate the ground state energies for both cases.
The finite DMRG algorithm with matrix product state [27]
optimization was performed using the ITensor C++ library
[28]. Y ¼ 1 units and a spin-6 truncation [23] were used in
all DMRG calculations.
As explained in more detail in Ref. [23], arguments

regarding the behavior at small and large gNs led us to
conjecture that NsΔE is solely a function of the product
ðgNsÞ2. Figure 1 supports this idea and shows a good data
collapse across multiple system sizes for both the discrete-
and continuous-time limits. Note that for the discrete-time
(Lagrangian) calculations at various κ, ΔE was rescaled by
2κ, while for the continuous-time (Hamiltonian) calcula-
tions, a similar rescaling of 2κτa was introduced by setting
Y ¼ 1. We emphasize that the collapse is by no means
automatic. It breaks down for κ not large enough, if we
increase g to large values while keeping Ns constant (there
are hints of this in Fig. 1 for the small Ns data), or if the
truncation value is smaller than mmax ¼ 2.
Notice that in all cases, NsΔE ≃ 0.5 when g2 ≃ 0, which

corresponds to the gapless BKT phase in the O(2) limit. We
also notice that the energy gap at finite g2 for 10BC is
bigger than the gap for PL-00BC. Because 10BC breaks the
inversion symmetry of the system, creating a charge on the
right costs more energy than that on the left. We can
understand this by doing the transformation L0z

i ¼ Lz
i − 1

for i ≤ Ns=2. Then the Hamiltonian with 10BC is related to
the Hamiltonian with the Polyakov loop by H10 →

H̃ þ U
PNs=2

i¼1 L0z
i þ NsU=4, which is simply adding a

linear potential on the left half of the system. But the data
collapse is still present, indicating the same universal-
ity class.
An important feature of the Hamiltonians considered

above is that Lz
i has positive and negative eigenvalues

and cannot be realized as the number operator of a
Bose-Hubbard model unless a large chemical potential
[24,29,30] or two atomic species are introduced [24]. For a

(a) (b)

FIG. 2. The Polyakov loop (arrows pointing up) and the matter
loop (arrows pointing down) composed of matter charges and
plaquette quantum numbers for (a) 00BC and (b) 10BC without
the Polyakov loop. Additional columns of zeros or ones are
implicit. The dotted line indicates the wrapping in the Euclidean
time direction.
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similar reason, a two-leg ladder with 2s atoms per rung for a
spin-s truncation was suggested in Ref. [18]; however, the
hopping along a rung can only emulate theLx operator in the
rotation group representation instead of the Ux operator in
Eqs. (5) and (6). Here, we propose a simpler experimental
realization to overcome this difficulty, namely an asym-
metric ladder ofNs rungs of length 2sþ 1 eachwith a single
atom per rung. The lattice constants are al and ar along legs
and rungs, respectively, see Fig. 3, and the tunnel coupling
along the legs is vanishing while it has a strength J along the
rungs. In this case, theLz projection of the spin is encoded in
the position m of the atom within a given rung and can be
read out with near-unity fidelity in a quantum gas micro-
scope [1]. The initialization of the system can be achieved in
such a setup by preparing an atomic Mott insulator and
employing site-resolved optical potentials [31].
We now aim at establishing a quantitative connection

between the spin Hamiltonians Eqs. (5) and (6) and the
Hamiltonian of such a ladder system. The latter reads

Ĥ ¼ −
J
2

XNs

i¼1

Xs−1

m¼−s
ðâ†m;iâmþ1;i þ H:c:Þ −

XNs

i¼1

Xs

m¼−s
ϵm;in̂m;i

þ
XNs

i;i0¼1

Xs

m;m0¼−s

Vm;m0;i;i0 n̂m;in̂m0;i0 : ð7Þ

Here, we have introduced an interaction Vm;m0;i;i0 between
two particles at positions ðm; iÞ and ðm0; i0Þ as well as an
on-site potential ϵm;i. The term X

P
iU

x
i in Eqs. (5) and (6)

directly maps to the tunneling term in Hamiltonian Eq. (7)
for J ¼ X.
Realizing the other two terms requires fine-tuned values

Vm;m0;i;i0 ¼ Vm;m0δi0;iþ1, with Vm;m0 ¼−jV0jþYðm−m0Þ2=2
for the interaction potential between two particles con-
strained by the Kronecker symbol δi0;iþ1 to be located in
two neighboring rungs. Furthermore, the on-site potentials
have to be tuned to ϵm;i¼−Um2=2 for the rungs with i≠1;

Ns and ϵm;1 ¼ ϵm;Ns
¼ −ðU þ YÞm2=2 for two rungs at the

boundaries, up to an irrelevant constant energy offset
−ðNs − 1ÞjV0j=Ns implied for all on-site potentials.
Introducing a Polyakov loop amounts to changing the

on-site potentials on the two central rungs Ns=2 and
Ns=2þ 1 to ϵm;Ns=2 ¼ −Um2=2 − Ym and ϵm;Ns=2þ1 ¼
−Um2=2þ Yðm − 1=2Þ, respectively. The boundary con-
dition 10BC can be realized by tuning the on-site potential
at one end of the ladder to ϵm;1 ¼ −Um2=2 − Yðm − 1Þ2=2.
While the tailored on-site potentials ϵm;i can be generated

using optical potentials controlled at the single-site level
[32], realizing the quadratic distance dependence of the
interaction between two particles is challenging in cold
atomic gases. However, they can still be realized approx-
imately using off-resonant optical coupling of the atoms
to Rydberg states. The resulting isotropic Rydberg-
dressed interactions [33,34] in cold atoms have recently
begun to be explored in a many-body setting [20] and
exhibit a characteristic distance dependence VðRÞ ¼
U0=½1þ ðR=RcÞ6� for two atoms separated by a distance
R. The saturation value U0 can be tuned to be positive
or negative, and the interaction range Rc is set by the
interactions of the coupled Rydberg states and typically
reaches up to several sites in an optical lattice [35].
The key idea in implementing quadratic interactions

in the ladder model consists in utilizing an asymmetric
ladder with different lattice constants along legs and
rungs, respectively. In the limit of large al=ar, the
interaction potential along the rung approximately
acquires the desired quadratic distance dependence for
neighboring rungs with jV0j ¼ jU0j=½1þ ðal=RcÞ6� and
Y ¼ 6jU0jðal=RcÞ6ðar=alÞ2=½1þ ðal=RcÞ6�2. At the same

J

i

m

al

ar

Rc

V

S
pi

n
La

tti
ce

FIG. 3. Multileg ladder implementation for spin-2. The upper
part shows the possible mz projections. Below, we show the
corresponding realization in a ladder within an optical lattice. The
atoms (green disks) are allowed to hop within a rung with a
strength J, while no hopping is allowed along the legs. The lattice
constants along rungs and legs are ar and al, respectively.
Coupling between atoms in different rungs is implemented via
an isotropic Rydberg-dressed interaction V with a cutoff distance
Rc (marked by blue shading).
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FIG. 4. Quadratic interactions on an asymmetric ladder for
s ¼ 2. The isotropic Rydberg-dressed potential (dashed blue line)
is sampled at different distances occurring in the ladder (blue
points). Interactions between atoms in different rungs separated
byΔi ¼ ji − i0j occur in groups. The inset shows the approximate
quadratic dependence for Δi ¼ 1 versus distance Δm ¼ jm −m0j
within a rung compared to a true quadratic interaction (red solid
line). The parameters used are Rc ¼ al ¼ 7ar.
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time, interactions between next-nearest-neighbor rungs
can be minimized, see Fig. 4, making them irrelevant for
the predicted collapse shown in Fig. 1. This and other
imperfections as well as concrete experimental numbers are
further discussed in Ref. [35].
A strength of the presented ladder implementation is the

simple realization of models with different spin. A natural
first step would be to check the experimental feasibility of
the proposal with just two legs, i.e., s ¼ 1=2 in Eq. (7). The
emerging spin model corresponds to the well-studied
spin-1=2 quantum Ising chain in a transverse field with
the Hamiltonian

Ĥ ¼ −λ
XNs

i¼1

σ̂zi σ̂
z
iþ1 − hx

XNs

i¼1

σ̂xi − h
XNs

i¼1

σ̂zi : ð8Þ

The transverse field is realized by the tunneling of the
atoms and has a strength hx ¼ J=2. Tuning ϵ�1=2¼
�h−ðNs−1ÞðjV0j−λÞ=Ns, V1=2;1=2 ¼ −jV0j, V−1=2;1=2 ¼
−jV0j þ 2λ is required to realize the other two terms.
Expressing all energies in units of the transverse field

(hx ¼ 1), this model has a second-order phase transition at
λ ¼ 1 with known exponents [39]. As quantum simu-
lations are still made on relatively small lattices, it is
convenient to study the finite-size scaling dictated by the
renormalization-group analysis of the second-order phase
transition. The zero temperature magnetic susceptibility
reads

χquant ¼ 1

Ns

X

hi;ji
hðσ̂zi − hσ̂zi iÞðσ̂zj − hσ̂zjiÞi; ð9Þ

where h� � �i are short notations for hΩj…jΩi with jΩi the
lowest energy state of Ĥ. The data collapse obtained with
the standard RG rescalings is illustrated in Fig. 5.

The quantum Ising model has, for example, been
quantum simulated in systems of ultracold ions [40] and
with atoms in tilted optical lattices [41]. New generations of
D-wave machines have more versatile time-dependent
capabilities. It seems possible to maintain a transverse
field [42], but there are temperature effects that need to be
better understood. Multimode cavity photon-mediated
interactions [43] can also be used to simulate the quantum
Ising model. The possibility of extending these setups
or related ones to reproduce a multileg ladder is being
investigated.
In conclusion, we have presented an experimental plat-

form for the quantum simulation of the Abelian Higgs
model in 1þ 1 dimension and outlined a strategy for an
initial benchmark of the quantum simulator. An interesting
perspective is the experimental simulation of out-of-
equilibrium dynamics following a quantum quench, which
promises insight into dynamics described by the LGTwhen
inaccessible with classical computing.
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