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We consider an interacting quantum field theory on a curved two-dimensional manifold that we
construct by geometrically deforming a flat hexagonal lattice by the insertion of a defect. Depending on
how the deformation is done, the resulting geometry acquires a locally nonvanishing curvature that can be
either positive or negative. Fields propagating on this background are forced to satisfy boundary conditions
modulated by the geometry and that can be assimilated by a nondynamical gauge field. We present an
explicit example where curvature and boundary conditions compete in altering the way symmetry breaking
takes place, resulting in a surprising behavior of the order parameter in the vicinity of the defect. The effect
described here is expected to be generic and of relevance in a variety of situations.
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Introduction.—The theory of quantum fields in curved
space has produced remarkable results [1,2], particle
production in gravitational fields [3] and black hole
evaporation [4] being amongst its most celebrated off-
springs. From a more general perspective, its semiclassical
framework has established a highly nontrivial connection
between thermodynamics, gravity, and quantum field
theory (QFT), and it is at this crossroads where nontrivial
manifestations of the geometrical and topological attributes
of curved space on the quantum domain occur.
A particularly interesting corner of this intersection is

that of QFTs featuring spontaneous symmetry breaking,
where effects of curved space are expected to alter the way
vacuum destabilization and phase transitions take place. In
flat space the story has been known for a long time and the
Coleman-Weinberg mechanism clarifies the way radiative
corrections destabilize the vacuum, with symmetries being
spontaneously broken as a result of quantum effects [5].
On curved backgrounds there are differences that are not

difficult to anticipate. A first indication of how things
change comes from the same Coleman-Weinberg mecha-
nism that predicts a first-order phase transition from a
broken to a restored symmetry phase in scalar electrody-
namics when the scalar mass is increased [5]. When lifted
to a weakly curved space, renormalization theory implies

the appearance of a masslike contribution proportional to
the Ricci curvature, thus causing an effective increase of the
mass of the scalar. It is then natural to expect that the effect
of a positive (negative) spacetime curvature would be to
push the system towards a phase of unbroken (broken)
symmetry.
Additional insight comes from spacetimes with horizons

that are periodic in imaginary time. Green’s functions on
these backgrounds enjoy a periodicity with period set by
the horizon size, analogous to thermal Green’s functions for
which the period is set by the inverse temperature. This
leads to the expectation that for a sufficiently small horizon
a transition from a broken to a symmetric phase may occur.
These arguments have been made quantitatively in a

number of cases, with some initial discussions focusing on
scalar fields and spatially homogeneous backgrounds (see
Refs. [6–8], where direct computations have shown that a
positive curvature does indeed assist symmetry restoration).
Interestingly, it was also shown that the details of the scalar
field theory (its conformal invariance or lack of it) were
responsible for a change in the order of the curvature-
induced phase transition [7]. Similar issues in relation to
chiral symmetry breaking have also been discussed (see
Ref. [9] for a review of earlier works). The situation is more
complicated for inhomogeneous or topologically nontrivial
backgrounds. A sample of early calculations can be found
in Refs. [10–15]. A particularly interesting example is that
of black holes discussed, for instance, in Refs. [14,15].
There it was shown that a spontaneously broken symmetry
is locally restored near a (sufficiently hot) black hole (see
also Refs. [16,17]). The interpretation is again that the
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strong gravitational gradient near the horizon is responsible
for inducing symmetry restoration.
The natural playground for contemplating how space-

time topology and curvature might modify the stability of
the vacuum in QFT has always been in the domain of early
Universe cosmology. Recently, however, other areas of
physics have been contributing to modernize the above
questions and to formulate exciting new problems.
One such area is related to recent advances in condensed

matter research, particularly in connection with layered
materials. Graphene and other 2D materials are the most
spectacular example of the sort, owing to geometrical
versatility coupled with an emergent relativistic behavior
of fermions [18–20]. In these examples the background
geometry is the 2D lattice on top of which fluctuations
propagate, and the relevance of curvature effects has already
been appreciated [21–25].Other interesting examples can be
found in Refs. [26,27].
QCD physics is also fueling novel research in which the

use of QFT in curved space is becoming more common.
Interesting examples range from the generic remarks of
Refs. [28,29] (and references therein) to the active area of
strongly interacting fermions and chiral symmetry breaking
in rotating backgrounds (see, for example, Refs. [30–36])
to applications of lattice QCD (see, for example, Refs. [37–
39]). In these contexts a range of peculiar geometry-
induced phenomena are expected to occur (e.g., condensate
suppression or enhancement, new phases, changes in the
critical points geography) whose relevance includes heavy
ion collisions, transport phenomena, and compact stars.
The focus of this Letter is to reconsider the role of

the background geometry in altering the stability of
the vacuum. We will argue that, contrary to expectation,
increasing the spatial curvature does not necessarily push
the system closer to a phase of restored symmetry, and we
shall present an explicit example of this. Although the
example is nontrivial, it is amenable to simple explanation
and anticipates the possibility of appearance of exotic
changes in the phase behavior of interacting QFTs with
a number of interesting implications.
Model and geometry.—For concreteness, we shall con-

sider a class of (2þ 1)-D QFT of the Hubbard type, whose
Hamiltonian H ¼ H0 þ HI is the sum of a free part,

H0 ¼ −t
X

r;i;σ¼�
u†σðrÞvσðrþ biÞ þ H:c:;

plus an interacting sector,

HI ¼
U
4

X
r;σ;σ0;i

½nσðrÞnσ0 ðrÞ þ nσðrþ biÞnσ0 ðrþ biÞ�:

The above QFT is defined on a lattice that we assume to be
flat with hexagonal cells, generated by linear combinations
of basis vectors (see Fig. 1; r span a triangular sublattice

and the vectors bi, i ¼ 1, 2, 3, connect the atom in r with
the nearest neighbors). The annihilation operators of the
two sublattices are u and v, and nσ is the number operator.
U and t are, respectively, the hopping and the interaction
constant (both > 0).
The above model, routinely used to describe many of the

properties of graphene [18,40], allows for the possibility of
locally introducing a curvature by inserting a defect in the
lattice.
Performing a lattice simulation should be feasible. Here,

we propose a geometrical perspective on how symmetry
breaking is altered by lattice deformations, and we will be
concerned with the continuum limit, which we implement
by separately taking the continuum limit of the flat space
field theory and of the lattice. Both limits are known, and
this way of proceeding guarantees that the free-field limit
(see, for example, Refs. [22,24]) is safely recovered.
The type of symmetry that we wish to discuss is

associated with the bipartite nature of the honeycomb
lattice that the Hubbard model captures in the magneti-
zation (defined below). Since our goal here is to scrutinize
the effect of curvature on the spontaneous breakdown of
the above sublattice symmetry, our first task is to
covariantize the model to curved space. For this it is
convenient to work with the continuum Lagrangian
counterpart that can be obtained, using standard methods,
by expressing the original Hamiltonian in terms of the
SU(2) vector S ¼ P

σ;σ0 u
†
σðrÞτ⃗σ;σ0uσ0 ðrÞ=2, where τ⃗ is a

vector with the Pauli matrices as components, and then to
proceed by means of a Hubbard-Stratonovich transforma-
tion. To keep our treatment as simple as possible, we will
assume a scalar order parameter, motivated by a rotational
anisotropy favoring symmetry breaking along the z axes
(for graphene this could be due to the presence of a
substrate and related spin-orbit coupling enhancement
[41,42]). This allows us to gap out the Goldstone modes
that can be straightforwardly included in a more involved
treatment. Choosing an auxiliary field ϕ that breaks the
Z2 and the discrete sublattice symmetry, the Hamiltonian
can be mapped, at low energies, onto the following
(2þ 1)-dimensional theory:

FIG. 1. (Center panel) The flat hexagonal lattice with a 2π=3
section highlighted. (Left panel) Subtracting a 2π=3 section, one
obtains a positive curved cone with a ns ¼ 4 sides defect. (Right
panel) Adding a 2π=3 section, instead, generates a negative
curved saddle geometry with ns ¼ 8.
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L ¼ ψ̄σ{=∂ψσ þ ðσψ̄σϕψσÞ þ
ϕ2

2λ
; ð1Þ

where the first term is a free Dirac contribution and the
remaining terms describe the interaction sector. The
summation over repeated spin indices σ ¼ � is under-
stood, and the four-component spinors ψσ are arranged as
ψT
σ ¼ ðψA1

σ ;ψB1
σ ;ψA2

σ ;ψB2
σ Þ, with ψ IJ

σ ðxÞ¼ða=vFÞ
R ½ðd2pÞ=

ð2πÞ2�e−{p·xzIJσ ðpÞ, and where zI;Jσ ðpÞ ¼ zIσ½KJ þ
ða=vFÞp� represents the sublattice annihilation operators
(zA ¼ u, zB ¼ v) near the two Dirac cones KJ¼1;2 of the
dispersion relation. The spatial coordinates were rescaled
by x ¼ r=vF, where vF ¼ 3

2
ta is the Fermi velocity and a

is the lattice spacing. The coupling constant λ is propor-
tional to the interaction strength λ ∝ U up to an unim-
portant factor, dependent on the particular regularization
of the low energy theory.
The exchange of the sublattices can then be implemented

by the simultaneous exchange x2 → −x2 (p2 → p2), leav-
ing intact the Dirac points and the spin, and the Lagrangian
(1) invariant as long as ϕ vanishes. The order parameter for
the above symmetry is ϕ ¼ 2λhψ̄−ψ− − ψ̄þψþi, and it
describes the staggered magnetization; i.e., ϕ ≠ 0 indicates
broken symmetry. The same expression (1) is obtained
following the general decomposition outlined in Ref. [43].
Kirigami is a variation of origami that includes cutting

[44]. Utilizing a kirigami procedure, we introduce a spatial
curvature in the model by inserting a disclination that warps
the lattice locally. If we wish to isolate the interplay
between quantum effects and geometry, we need to
preserve the bipartite nature of the lattice at tree level to
avoid frustration. This requirement restricts the allowed
deformations to those induced by defects with an even
number of sides, as these are the only that preserve the
above symmetry classically. Inserting a defect with ns < 6
sides into a hexagonal lattice generates a deficit angle and a
curvature that is locally positive (Fig. 1). By contrast,
adding a defect with ns > 6 generates an excess angle and a
locally negative curvature (Fig. 1). These lattice structures
form the basis of chiral curved polyaromatic systems [45].
The lattice plays the role of geometry, and its conti-

nuum limit is that of a manifold with a regularized coni-
cal singularity (see, for instance, Ref. [22,24]). The
Riemannian geometry of such manifolds has been studied
since, at least, Ref. [46]. References [47,48] give details
and additional bibliographies on the topic. Here, to model
such a localized curvature, we use a Euclidean paramet-
rization for the metric tensor

ds2 ¼ dτ2 þ dr2 þ α2r2dφ2; ð2Þ

with r ≥ 0 and 0 ≤ φ < 2π being the polar coordinates
centered at the apex. Setting φ̃ ¼ αφ, one sees that the
metric is that of flat space with 0 ≤ φ̃ < 2πα. If α < 1, then
γ ¼ 2π − 2πα describes a deficit angle. Removing the

deficit angle and identifying the two sides results in a
cone with opening angle 2 arcsin α. The closer to unity α is,
the flatter the cone. If α > 1, then the deficit angle becomes
an excess angle.
Since the curvature of conical manifolds diverges at the

apex, some regularization is necessary to deal with the
singular behavior. Here, we will regulate the geometry by
replacing the singular space with a sequence of regular
manifolds as was done in Refs. [47,48]. Calculations are
done in the regularized geometry, and results in the original
singular space can be obtained as a limit once the
regularization is removed at the end. This procedure can
be implemented by replacing the original metric (2) with
the following regular one:

ds̃2 ¼ dτ2 þ fϵðrÞdr2 þ α2r2dφ2; ð3Þ

where ϵ represents a regularization parameter and fϵðrÞ
is a smooth function satisfying the following proper-
ties: (a) limϵ→0fϵðrÞ ¼ 1, (b) fϵðrÞ ≈ 1 for r ≫ ϵ,
(c) fϵðrÞ ¼ const for r ¼ 0. Notice that while the limit
of ϵ → 0 removes the regularization, in a comparison with a
lattice simulation, ϵ is related to the lattice spacing
acquiring the role of a physical cutoff. Alternatively, one
can deal with the singular structure from the beginning at
the price of having to deal with a more complex form of the
heat kernel [49–51]. (See the Supplemental Material [52]
for additional details.)
The Lagrangian (1) is extended to curved space by a

minimal covariantization procedure, i.e., letting metric,
derivatives, and γ matrices go to the corresponding quan-
tities in curved space (see Ref. [53]).
Finally, we take into account the boundary conditions

along the cut where the two sides of the lattice have been
glued. It is not difficult to realize that for a generic even-
sided defect, the sublattice symmetry is preserved and the
fermion wave function, after circulating around the defect,
satisfies the following boundary condition: ψðr;φþ 2πÞ ¼
− exp ½ið6 − nsÞπγ5=2�ψðr;φÞ. (We follow Ref. [22] and
choose to work in the standard planar representation of the
γ matrices.) A way to incorporate these boundary con-
ditions is by reexpressing the fields as ψ 0ðr;φÞ ¼
exp ½−iφð6 − nsÞγ5=4�ψðr;φÞ, and by noticing that the
primed fields obey the standard periodicity condition
ψ 0ðr;φþ 2πÞ ¼ −ψ 0ðr;φÞ. Using the above redefinition
in the Lagrangian has the effect of introducing a non-
dynamical gauge connection Aμ ¼ −δφμ ð6 − nsÞγ5=4. This
term will be crucial in altering the way symmetry breaking
takes place.
Methods and results.—We can now examine whether the

geometry and the associated boundary conditions favor a
phase of broken or restored symmetry in the region where
curvature attains a positive (ns ¼ 4) or negative (even
ns > 6) value. As motivated at the beginning, since the
curvature in the regularized case increases (decreases) as
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we approach the defect for ns ¼ 4 (ns ¼ 8; 10;…), the
expectation is that curvature should favor symmetry resto-
ration in the vicinity of the defect for ns ¼ 4, while for ns
even and larger than 6 broken symmetry should be favored.
Below we shall address this question by computing the

effective action for the order parameter ϕ and by numeri-
cally solving the associated effective equations. Our analy-
sis follows the large-N deformation of Ref. [43], where we
pass from 2 to N flavors of the Dirac fields. The general
form of the effective action is

Γ̃½ϕ� ¼ −
Z

d3x
ffiffiffĩ
g

p ϕ2

2λ
þ 1

2

X
p¼�

log det
�
□̃þ R̃

4
þ ϕ2

p

�
;

where ϕ2
� ¼ ϕ2 � ffiffiffiffiffiffi

g̃rr
p

ϕ0 and the d’Alembertian is calcu-
lated from the spinor covariant derivative D̃ν ¼ ∇̃ν þ iAν.
The tildes indicate quantities computed in the regularized
metric (3). We use heat-kernel and zeta regularization
techniques to perform the computation of the determinant
(see Refs. [2,54–57] for general discussions and
Refs. [16,53] for similar calculations in curved space).
For the convenience of the reader, the computation of the
determinant is described in the Supplemental Material [52].
The results are illustrated in Fig. 2 for cases with locally

positive (ns ¼ 4) and negative curvature (ns ¼ 8). The
asymptotic value of the coupling constant should be fixed
by imposing renormalization conditions (see Ref. [9]) to
adjust its value to specific physical situations. Here, we
have varied its value to encompass cases in which sym-
metry is either broken or close to the critical value far from
the defect (see Fig. 2). Numerical solutions indicate that ϕ
develops a spatial dependence and attains a value near the
defect that is larger than its asymptotic value for any ns ≠ 6,
signaling that curvature, irrespectively of its sign, encour-
ages an ordered phase near the defect.

The competition between curvature and gauge field in
deforming the order parameter near the defect can be
understood in light of the arguments of Ref. [28]. When the
background is curved, a masslike correction proportional to
scalar curvature (þR̃=4) appears in the determinant. The
additional gauge field alters the determinant by an amount
−n2s=r2, as it follows by squaring the Dirac operator and
using the Lichnerowicz formula (interestingly, the number
of sides of the defect can be interpreted as an effective
charge). Thus, the total correction is proportional to
þR̃=4 − n2s=r2, and its contribution to the effective action
can be fully resummed (see the Supplemental Material
[52]). Its effect is to induce a local change that locally shifts
the effective potential (upwards when the correction is
positive, downwards when the correction is negative). The
term −n2s=r2 always dominates near the defect, and it is
enhanced for ns > 6 when R̃ < 0.
Conclusions.—In this Letter we have looked at sym-

metry breaking in the Hubbard model on a curved 2D
manifold constructed by taking the continuum limit of a
flat hexagonal lattice deformed by insertion of a defect.
The two important features of the story turn out to be the
increasing (or decreasing) curvature near the defect and the
boundary conditions along the cut. The latter can be
assimilated by a nondynamical gauge field. As an example,
we have considered the staggered magnetization, the order
parameter associated with the discrete sublattice symmetry.
Numerical results have shown a surprising increase of the
order parameter as the locally curved region is approached.
This behavior has been explained by the competition
between the effect of curvature and of the emergent gauge
field (i.e., boundary conditions) modulated by the conical
structure.
What we have seen here should be generic and should be

expected to occur for different QFT phases and different
lattice structures as long as the same geometrical traits are
maintained. Here, we have ignored fluctuations of the order
parameter; thus, the system is always in the ordered state.
However, the way R̃ and the emergent gauge field appear in
the determinant suggests an analogous suppression to what
we find here of the onset of a metallic phase. An intriguing
possibility is to consider a multidefect configuration and
look for arrangements where the competition between the
geometry-induced gauge fields and curvature can be
adjusted to produce specific order parameter profiles.
The effect of curvature on the spontaneous breaking of

sublattice symmetry could be used to shed light on the
question regarding the semimetal-insulator phase transition
in graphene: even though graphene is predicted to be very
close to the transition point [40,58], no experimental
signature of the insulating behavior has been found in flat
graphene so far [59]. Another promising route in graphene
would be the combination of curvature with adatom
adsorption in order to enhance symmetry breaking, in
particular of magnetic order [60].

FIG. 2. Order parameter profile as the defect is approached.
The values of λs;o are given in units of the renormalization scale
(s, square; o, octagon). ϵ has been varied between 0.1 and 0.01.
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Cosmic strings in cosmology [61] or their condensed
matter analogue (in liquid crystals, for example [62,63])
offer a straightforward application of our results. In this
case the effect discussed here should locally trigger fermion
condensation and offer a mechanism for inducing a super-
conducting phase at the string.
Finally, it is tempting to relate the present ideas to gravity

at the Planck scale, where spacetime may be discrete and
the presence of defects could cause local changes in the
lattice geometry and topology similar to those described
here, triggering a form of graviton condensation in the
vicinity of these spacetime glitches.
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