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We propose a self-validating scheme to calculate the unbiased responses of quantum many-body systems
to external fields of arbitrary strength at any temperature. By switching on a specified field to a thermal
pure quantum state of an isolated system, and tracking its time evolution, one can observe an intrinsic
thermalization process driven solely by many-body effects. The transient behavior before thermalization
contains rich information on excited states, giving the linear and nonlinear response functions at all
frequencies. We uncover the necessary conditions to clarify the applicability of this formalism, supported
by a proper definition of the nonlinear response function. The accuracy of the protocol is guaranteed by a
rigorous upper bound of error exponentially decreasing with system size, and is well implemented in the
simple ferromagnetic Heisenberg chain, whose response at high fields exhibits a nonlinear band
deformation. We further extract the characteristic features of excitation of the spin-1=2 kagome
antiferromagnet; the wave-number-insensitive linear responses from the possible spin liquid ground state,
and the significantly broad nonlinear peaks which should be generated from numerous collisions of
quasiparticles, that are beyond the perturbative description.
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When studying the dynamics of quantum many-body
systems, one often encounters problems to which the linear
response (LR) theory does not apply [1–4]. The LR to a
weak external field gives us information only on the first-
order excitations. For stronger fields, a nonlinear response
(NLR) arises from higher-order processes, such as multi-
photon and Raman processes, which provide us with
abundant information on the excitations of the system
[5–9]. Even a nonperturbative effect such as the band-gap
renormalization is observed in the NLR [7,9].
Applications of the LR includes the determination of the

fluctuations at or near equilibrium [1–4], which is used to
estimate the noises in electrical circuits [10]. On the top of
that, the NLR covers a wider range of phenomena including
harmonic generation [5], squeezing [11], generation of
entangled states [12], and quantum computation [13].
Therefore, in the quest for appropriate nonlinear materials,
basic understanding of the NLR is demanded.
Unfortunately, it is hard to calculate or predict the NLR

in many-body quantum systems except for very limited
cases, such as in an off-resonant field whose effects can be
renormalized into the system parameters [14,15]. This
situation stands in contrast to the LR, with many elaborate
methods developed, such as density matrix renormalization
group [16–18], quantum Monte Carlo simulations [19,20],
kernel polynomial method [21], time correlation in pure
quantum states [22–31], and matrix-product state [32].
Some of them were applied to the NLR [24,30] but only in
a limited situation such as infinite temperature.

If the system had only a few degrees of freedom, it would
require a bath in order to “thermalize” after the quench. For
such cases, numerical methods were successfully devel-
oped [33–35], where the LR and NLR would depend
explicitly on the system-bath coupling. However, recent
studies revealed that a many-body quantum system ther-
malizes even when isolated, provided that the number of
conserved quantities is small [36–43]. We then expect that a
series of pure states that appear during the nonequilibrium
relaxation process includes abundant information on the
intrinsic dynamics of the system.
In this Letter, we build a general and systematic protocol

to extract the responses from the LR to the NLR regime
based on the typicality approach [36,44–51]. Our method is
applicable to general many-body quantum systems and at
any temperature. We prove rigorously that the time evo-
lution of the expectation value of any low-order polynomial
of local observables agrees with that obtained from the time
evolution of the Gibbs state, within an error exponentially
vanishing with increasing system size. We also clarify the
necessary conditions to legitimate our NLR functions.
These two guarantee the fully controlled observation
beyond the LR. As illustrations, we analyze the NLR to
a helical magnetic field for the kagome antiferromagnet
[52–56] as well as for the ferromagnetic Heisenberg chain.
Initial equilibrium state.—Consider a many-body

quantum system with the Hamiltonian Ĥ, initially
(t ≤ 0) in a thermal equilibrium. Such an equilibrium
state can be represented by various types of pure quantum
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states [36,44–51]. Here, we choose the unnormalized
canonical thermal pure quantum (CTPQ) state [50] as
an initial equilibrium state given by

jβ; Ni ¼
X

ν

zν exp½−βĤ=2�jνi; ð1Þ

at inverse temperature β ¼ 1=T (where kB ¼ 1) and
system size N, with an arbitrary orthonormal basis of
the Hilbert space fjνigν, and a random complex number
zν ¼ ðxν þ iyνÞ=

ffiffiffi
2

p
[51]. A single CTPQ state gives the

free energy by βFðT;NÞ ¼ − ln hβ; Njβ; Ni, and accord-
ingly all the thermodynamic properties within an error
exponentially decreasing in N [49–51].
Response to external field.—Let us switch on an external

vector field h at t ¼ 0,

hðx; tÞ ¼ hnðxÞθðtÞ; ð2Þ

where h > 0, maxxjnðxÞj ¼ 1, x is a spacial coordinate, and
θðtÞ is the step function. Suppose thath couples to the system
with the interaction Ĥext ¼ −

P
xhðx; tÞ · ŝðxÞ ¼ −hB̂θðtÞ,

where ŝðxÞ is a local operator of the system, and
B̂ ≔

P
xnðxÞ · ŝðxÞ.

As a response to h, we focus on a certain observable Â,
which is an additive quantity or, more generally, a low-
order polynomial (such as a two-point correlation) of local
observables [57]. Its deviation from the initial equilibrium
value is given by

ΔAðtÞ ¼ hÂðtÞiβ;N − hÂiβ;N; ð3Þ
where h•iβ;N ≔ hβ; Nj • jβ; Ni=hβ; Njβ; Ni, ÂðtÞ ¼
Û†ðtÞÂ ÛðtÞ, and, taking ℏ¼1, ÛðtÞ ¼ exp½−iðĤ − hB̂Þt�.
Here, similarly to what is rigorously proved for hÂiβ;N in

the CTPQ state [50], we show that hÂðtÞiβ;N converges in
probability to the nonequilibrium value calculated from the
Gibbs state ρ̂β, hÂðtÞiensβ;N ¼ Tr½ρ̂βÂðtÞ�. Its deviation from
the Gibbs ensemble after dropping off smaller-order terms
is evaluated as

D½ÂðtÞ�2 ≔ ðhÂðtÞiβ;N − hÂðtÞiensβ;NÞ2

≤
h(ΔÂðtÞ)2iens2β;N þ ðhÂðtÞiens2β;N − hÂðtÞiensβ;NÞ2

exp½2βfFðT=2; NÞ − FðT;NÞg� ;

ð4Þ

where •̄ denotes average over realizations of fzνg, and
ΔÂðtÞ ≔ ÂðtÞ − hÂðtÞiens2β;N . For every finite β, FðT=2; NÞ−
FðT;NÞ ¼ ΘðNÞ [58] because the entropy S ¼
−∂F=∂T ¼ ΘðNÞ. Hence, the denominator of the rhs of
Eq. (4) is eΘðNÞ. Now, if we consider a typical casewhere Â is
an m-degree polynomial of bounded local observables [59],
the numerator is bounded to ≤ ΘðN2mÞ. We thus find

D½ÂðtÞ�2 ≤ ΘðN2mÞ=eΘðNÞ, which becomes exponentially
small with increasing N. According to a Markov type
inequality, this implies that hÂðtÞiβ;N converges to

hÂðtÞiensβ;N with probability exponentially close to one, as
in the equilibrium case [49–51]. Therefore, Eq. (3) gives the
correct response of the system of size N with exponentially
small error.
Linear and nonlinear susceptibility.—The LR and NLR

need to be discussed separately. When h is small enough,
the response extrapolates to that obtained from the LR
theory [1–4]. In this LR regime, the linear susceptibility (or
admittance) χðωÞ, which is the Fourier transform of the LR
function [1–4], does not depend on the profile of h along
the time axis. Therefore, it is sufficient to consider the
specific time dependent profile Eq. (2), to obtain the
general form of χðωÞ as a function of frequency ω.
Assuming that Â is an additive observable, we obtain
the following formula:

χðωÞ ¼ ΔAðþ∞Þ
Nh

− iω
Z

∞

0

Δ0AðtÞ
Nh

eiωtdt; ð5Þ

where Δ0AðtÞ ≔ hÂðtÞiβ;N − hÂðþ∞Þiβ;N . According to
Kubo [1], χðωÞ is explicitly given by the retarded Green
function at equilibrium, which contains the information on
the elementary excitations, whose nature could thus be
examined by evaluating hÂðtÞiβ;N for sufficiently small h.
One can further specify the wave number q in h, in order to
obtain the q-dependent susceptibility χðq;ωÞ. These points
will be illustrated shortly.
At larger h, the correspondence with the LR theory

breaks down. Still, we use Eq. (5) as the definition of the
nonlinear susceptibility χðq;ω; hÞ with explicit h depend-
ence, because it is well defined even in this NLR regime
and is continuously connected to the linear one.
Here, we do not follow the conventional perturbative

definition in nonlinear optics [5]. Our χðq;ω; hÞ could treat
nonperturbative effects such as the nonlinear band defor-
mation, as we see shortly.
Necessary conditions.—In actual physical systems,

Eq. (5) gives correct predictions provided that Ĥ and
Ĥext are the realistic Hamiltonians [4,60]. However, in
model calculations, the Hamiltonian is often too idealized,
as in the case of integrable Hamiltonians obtained by
neglecting small but nontrivial interactions. Usually such
idealization does not affect the quality of the equilibrium
properties, whereas, it often happens that they give wrong
predictions about nonequilibrium properties [4,60,61].
To reasonably predict nonequilibrium properties of a

system, the following conditions are necessary:
(i) ½Â; Ĥ − hB̂� ≠ 0 because otherwise Âwould not respond

to h at all; (ii) ½Â; Ĥ� ≠ 0 and ½ _̂B; Ĥ� ≠ 0, since otherwise
the state would depend on h in the distant past, as explicitly
shown in the LR regime [1–4]; (iii) in cases where Ĥ − hB̂
has equilibrium states [63], the equilibrium susceptibility
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χeq should agree with the ω → 0 limit of Eq. (5) apart from
a small difference of oð1Þ due to equilibrium fluctuations.
If not, the result would be inconsistent with equilibrium
statistical mechanics. Notice that the temperature rises from
that of the initial state due to h, and χeq should be measured
at that temperature. In the LR theory, by contrast, the
temperature remains the same within the order of ΘðhÞ.
Hence, condition (iii) is a generalization of that of the LR
theory [61] to the NLR regime. These conditions (i)–(iii)
and Eqs. (1)–(5) constitute our protocol.
Numerical method.—We employ the CTPQ state [50],

jβ; Ni, as the initial equilibrium state, and adopt the
Chebyshev polynomials expansion to obtain ÛðtÞ [64].
This part dominates the total numerical cost, although is
much less costly than the full diagonalization. Throughout
the time evolution, the state keeps its purity, unlike the
systems coupled to baths [33–35].
Our protocol is almost self-validating in the sense that

the upper bound of the error D½ÂðtÞ� in the rhs of Eq. (4) is
evaluated within the protocol; the denominator is calculated
in a similar manner as above, and FðT;NÞ is obtained from
kjβ; Nik. Notice that for small N and low T, D½ÂðtÞ� can
become rather large, in which case, we average over
M-independent choices of fzνg to reduce D½ÂðtÞ� by a
factor of 1=

ffiffiffiffiffiffi
M

p
. (We takeM ¼ 20 and 3 in Figs. 2 and 3,

respectively.)
Application to ferromagnetic Heisenberg chain.—We

apply our protocol to the ferromagnetic Heisenberg chain,
Ĥ ¼ −

P
x ŝðxÞ · ŝðxþ 1Þ, at N ¼ 16 and 24 with the

periodic boundary. Here, a uniform magnetic field would
not satisfy the necessary condition (ii). Instead, we set h ¼
hnðxÞ as a helical magnetic field in the y − z plane, i.e.,
nðxÞ ¼ (0; cosðqxÞ; sinðqxÞ) with q ¼ nð2π=NÞ (n: inte-
ger). The spatial and time-dependent profiles of h are
shown in Figs. 1(a) and 1(b), respectively. Then we have
Ĥext ¼ −

P
xhðx; tÞ · ŝðxÞ ¼ −hM̂qθðtÞ, where M̂q is the

helical magnetization,

M̂q ≔
X

x

½cosðqxÞŝyðxÞ þ sinðqxÞŝzðxÞ�: ð6Þ

We take M̂q also as the observable of interest, Â, i.e.,
Â ¼ B̂ ¼ M̂q. Then, ΔAðtÞ ¼ ΔMqðtÞ ¼ hM̂qðtÞiβ;N since

hM̂qiβ;N ¼ 0 in the initial equilibrium state. The above
setup satisfies all the necessary conditions (i)–(iii) [(iii) has
been confirmed numerically].
Figure 1(c) shows the time evolutions of hM̂qðtÞiβ;N=Nh.

It approaches a nearly constant value for every q, indicating
the “thermalization” [65–67]. The transient behavior of
time evolution before thermalization contains rich infor-
mation on the low-energy excited states, which is reflected
in χðq;ω; hÞ.
Here, we focus on its imaginary part, Imχ, whose peak in

the LR regime indicates elementary excitations. To guar-
antee the convergence of Imχ, we take a long enough time
window, tend ¼ 80–160. We further calculate the round-trip
evolution jβ0; Ni ≔ Ûð−tendÞÛðtendÞjβ; Ni, which should
equal jβ; Ni if the time evolution is correctly carried out.
For a time step Δt ¼ 1=50 and the Chebyshev polynomials
up to 500th order, the fidelity becomes jhβ; Njβ0; Nij2=
hβ; Njβ; Nihβ0; Njβ0; Ni ¼ 1� 3 × 10−15 [68]. This con-
firms the perfect accuracy of our time evolution.
The highlight of the present protocol is the unbiased

evaluation of both the LR and NLR. The obtained
Imχðq;ω; hÞ for β ¼ 2 are plotted in Fig. 2(a) for
q ¼ π=4, π=2 and π. At h ≳ 0.1 the peaks of the spectra
show significant shift and broadening, which is a strong
nonlinear effect. At lower (higher) temperature, the peaks
and dips of χðq;ω; hÞ become sharper (broader), as shown
in Fig. 2(b). This happens because spins become more
paramagnetic and thus less sensitive to h at higher T. Since
the finite-size effects are negligibly small [Fig. 2(c)], we
concentrate on the case of N ¼ 16.
LR regime of Heisenberg chain.—When h≲ 0.1, the

response does not depend on h; χðq;ω; hÞ → χðq;ωÞ (see
Supplemental Material [61], Fig. S1). In this LR regime,
χ agrees with the Kubo formula (we confirmed for N ¼ 8)
except that the peaks and dips are broadened by δω ∼
1=tend because of the finite interval 0 ≤ t ≤ tend in the
Fourier transformation.
The fully polarized ground state of this model hosts a

series of magnon excitations [69–73]. One can construct a
small subspace that is spanned by the zero-, one-, and two-
magnon states [61]. By directly applying the Kubo formula
to this subspace, we obtain Imχsub [61], which is consistent
with our Imχ; the microscopic origin of the peaks at
h ≤ 0.1 is identified as the transitions from a few lowest
one-magnon levels to the higher ones, as well as to the
continuum [61]. This kind of treatment works to clarify
the physical origin of χ, but is usually not available, e.g., in
the kagome antiferromagnet we see shortly.
NLR regime of Heisenberg chain.—The spectrum at

h≳ 0.1 in Fig. 2(a) shows a shift and the significant
modification in its shape. Our protocol properly captures
these nonlinear effects clearly beyond the scheme of the
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FIG. 1. (a), (b) Schematic illustration of hðx; tÞ. (c) Time
evolution of hM̂qðtÞiβ;N=Nh at h ¼ 0.1, β ¼ 2, and N ¼ 16.
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Kubo formula. Here, the term −hM̂q cannot be treated as a
small perturbation, and hence, to interpret the NLR, we
diagonalize the full Hamiltonian Ĥ − hM̂q in the subspace
we used to interpret the LR [74]. The single magnon
dispersion (solid line in Fig. S1 in the Supplemental
Material [61]) is then folded by the period of q, and the
gap opens at k ¼ π=q, resulting in a band deformation as
shown in Fig. 2(d). Then, the transition energy between the
subbands at k ¼ 0, corresponding to the peak position,
increases with h. Thus, this picture explains semiquanti-
tatively the nonlinear peak shift observed in Fig. 2(a),
validating Eq. (5). However, the complete NLR spectra,
beyond such a simple picture, is disclosed for the first time
by our protocol.
Kagome antiferromagnet.—We now present the dynami-

cal responses of the spin-1=2 kagome antiferromagnet that
had been unreachable in any of the previous techniques.
The model is considered to host a spin liquid ground state
[52–54], and densely populated low-lying nonmagnetic
excitations [55]. Figures 3(a) and 3(b) show Imχðq;ω; hÞ
in the LR (h ¼ 0.05) [see Supplemental Material [61],
Fig. S2(b)] and NLR (h ¼ 0.5) regimes, respectively.
Here, we apply a magnetic field h ¼ h½0; cosðqxÞ;
sinðqxÞ�, varying along the x direction with q ¼ nπ=3
while uniform in the y direction on an N ¼ 27 cluster
[75]. Then the necessary conditions (i)–(iii) are satisfied.

The LR distinctly differs from Fig. 2 in that the three
different q’s all show very similar profiles (except for the
peak height); i.e., a characteristic wave number is absent.
This seems to share a common context to the featureless
magnetic structure factors of the frustrated spin liquid Mott
insulator [76]. We also find that the first peak exists at
around 0.05, in consistency with the position of the spin
gap [56], if present.
In the NLR regime, a significantly broad peak is found.

In the presence of strong many-body effects, the number of
collisions among correlated particles generated by the
strong field increases rapidly, dominating the NLR. In this
case, the perturbative descriptions [1,5] break down. We
expect this to happen in the present model due to large
entropy density s; in the time evolving pure state at
q ¼ π=6, it actually amounts to s ∼ ðkB ln 2Þ=2, half of
the total value [inset of Fig. 3(b)].
Concluding remarks.—If one simply replaces the

observable, Â, of the TPQ formulation [49–51] with the
Heisenberg operator, ÂðtÞ, it easily yields wrong predic-
tions on the LR, unless some conditions are fulfilled
[2,4,60]. Undoubtedly, this problem becomes more serious
for the NLR. We provided a solution to this fundamental
problem by identifying the necessary conditions (i)–(iii). It
works hand in hand with the proper definition of the
nonlinear susceptibility Eq. (5) which has a nonperturbative
form, and the necessary conditions serve as a safeguard to
avoid unphysical results. In the limit of weak fields, our
susceptibility and the necessary conditions recover those of
the LR theory.
On the numerical side, our protocol itself has neither

restrictions on the system size (except for a limitation by
available numerical resources) nor the types of models,
regardless of how rapidly the entanglement grows in time
evolution. So far, there had been no guarantees in both the
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FIG. 2. Results for the ferromagnetic Heisenberg chain.
(a) Imχðq;ω; hÞ at T ¼ 0.5 for h ¼ 0.1–1.0, q ¼ π=4-π,
N ¼ 16. (b) Imχðq;ω; hÞ at T ¼ 0.5–1.0 for h ¼ 0.5;
q ¼ π=2; N ¼ 16. (c) Comparison between N ¼ 16 and 24 at
T ¼ 0.5, h ¼ 0.5. (d) Single-magnon dispersion in a magnetic
field of q ¼ π, whose transition energies indicated by the arrows
are denoted by the vertical lines in (a) for q ¼ π.
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FIG. 3. Results for the spin-1=2 kagome Heisenberg antiferro-
magnet. Imχðq;ω; hÞ at T ¼ 0.1 andN ¼ 27 for (a) h ¼ 0.05, the
LR regime and (b) h ¼ 0.5, the NLR regime. The inset shows the
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of ferromagnetic chain for comparison. The star is heðtÞiβ;N at the
actual time evolution.
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LR and NLR for larger-scale approximate calculations. Our
protocol provides a reliability check within an available
system size beforehand. By computing the response func-
tion for the kagome antiferromagnet, we proved that our
method is well founded even in one of the most challenging
models in condensed matter.
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