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We investigate the universal dissipationless dynamics of Gaussian continuous-variable systems in the
presence of a band-gapped bosonic environment. Our results show that environmental band gaps
can induce localized modes, which give rise to the dissipationless dynamics where the system behaves
as free oscillators instead of experiencing a full decay in the long-time limit. We present a complete
characterization of localized modes and show the existence of the critical system-environment coupling.
Beyond the critical values, localized modes can be produced, and the system dynamics become
dissipationless. This novel dynamics can be utilized to overcome the environmental noises and protect
the quantum resources in the continuous-variable quantum information.
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The dissipation and decoherence processes induced by
surroundings are the central topic of study in the theory of
open quantum systems. These unavoidable processes almost
always lead to the irreversible loss of quantum coherence
and quantum correlations, which are the crucial resources for
quantum technologies [1–6]. Yet, quantum resources may
be protected by utilizing quantum states that are less
sensitive to environmental perturbations. This constitutes
the basic idea of passive protection of quantum resources,
which has been an important subject and had many
applications in quantum information [7]. A prominent
example is that of the decoherence-free subspaces, where
the state evolution inside these subspaces is completely
unitary [8–13]. Another novel example is the bound state,
where the discrete eigenstate is formed inside the environ-
mental band gap. Such a state is stable under environmental
noise and gives rise to dissipationless dynamics when the
non-Markovian effect is fully taken into account. For finite-
dimensional systems such as spin systems, this phenomenon
can occur for systems embedded in photonic band-gap
materials, known as atom-photon bound states [14–26].
This feature can lead to many practical phenomena such
as decoherence suppression [27], quantum entanglement and
correlation preservation [28–33], quantum speedup [34], and
metrology precision enhancement [35].
Despite significant progress on the subject, the analysis

has almost exclusively been focused on few-body systems.
The analogous behavior for many-body quantum systems is
of general interest and highly desirable, since ultimately
many schemes in practice require such systems. However,
it is still a challenging and almost unexplored topic to

understand such behavior in many-body systems. For
another category of quantum systems, i.e., continuous-
variable (CV) systems, another question arises: can bound
states still be formed in the band-gapped environment, and
if so, do these bound states lead to dissipationless dynam-
ics? These questions are especially interesting for Gaussian
systems, which constitute a large class of CV systems and
play a central role, as well as serving as primary tools in CV
quantum information. It would be novel and of practical
relevance if bound states can be formed in Gaussian
systems, which allows us to protect quantum resources
in many CV protocols. Despite some previous papers that
have addressed related simplified problems [36–42], the
models discussed in these articles are small systems and
can be regarded as finite-dimensional systems, since
oscillators behave as few-level atoms in their invariant
subspaces. Thus, these models may not provide correct
bound-state properties in Gaussian systems, even for the
single-oscillator case. Therefore, it is essential to establish a
bound-state theory for general Gaussian systems.
In this Letter, we explore the Gaussian dissipationless

dynamics in general CV systems with band-gapped
bosonic environments and show that, differently from
finite-dimensional systems, bound states in CV systems
are characterized by localized modes with frequencies
embedded in environmental spectral gaps. We obtain exist-
ence conditions of localized modes by analyzing non-
Markovian dynamics, and our results confirm that these
modes will give rise to dissipationless dynamics, where the
system behaves as free oscillators in the long-time limit. As
an important case, we analyze localized-mode properties in
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the weak system-environment coupling limit which can be
satisfied by most experimental settings. We further illustrate
our results in an experimentally achievable system.
We consider that the system consists of N interacting

oscillators bilinearly coupled to a general bosonic envi-
ronment, as shown in Fig. 1(a). The total Hamiltonian can
be written as Ĥ ¼ ĤS þ ĤE þ Ĥint, where ĤS ¼ PTP=2þ
XTVX=2 is the system Hamiltonian which describes N
oscillators. The N × N matrix V defines the interaction
between these oscillators, while column vectors X ¼ ðx̂1;
x̂2;…; x̂NÞT and P ¼ ðp̂1; p̂2;…; p̂NÞT store coordinates
and momenta of oscillators. The environment contains M
bosonic reservoirs and is described by the Hamiltonian

ĤE ¼ P
α Ĥ

ðαÞ with ĤðαÞ ¼ P
kðp̂ðαÞ2

k þ ω2
kq̂

ðαÞ2
k Þ=2. The

interaction Hamiltonian is Ĥint ¼
P

αik C
ðαÞ
ik x̂iq̂

ðαÞ
k ¼

XT
P

α C
ðαÞQðαÞ, where each oscillator can simultaneously

interact with many reservoirs, and CðαÞ
ik is the coupling

between the ith oscillator and mode k in the reservoir α.
This interaction is relevant in many realistic scenarios,
where the oscillator is coupled principally to one reservoir
and weakly to others. We emphasize that this model
describes a general linear network of open oscillators
and can appear in various physical systems [40,43–47],
as well as model most Gaussian protocols in the CV
quantum information [48,49].
The state of N oscillators can be completely described by

the characteristic function defined as χðk;tÞ¼Tr½ρðtÞD̂ðkÞ�.
Here D̂ðkÞ ¼ exp ½iðXTkx − PTkpÞ� is the Weyl operator,
and k ¼ ðkx; kpÞ is a 2N-component vector in the phase
space [48–50]. In this work, we focus on Gaussian dynamics
and assume the initial state of the total system to be factorized,
while each reservoir HðαÞ has a thermal initial state with
temperatureTðαÞ. Then, the state evolution can be obtained by
using the path-integral method with the Feynman-Vernon
influence functional [51], and it satisfies [52]

χðk; tÞ ¼ χ½ΦðtÞk; 0� exp
�
−
1

2
kTΣðtÞkþ iΠTðtÞk

�
; ð1Þ

where the transition matrix ΦðtÞ and thermal covariance
matrix ΣðtÞ are 2N × 2N matrices, and ΠðtÞ is a 2N vector.
These coefficients are determined by the Green function
matrix GðtÞ of the system, which satisfies

G̈ðtÞ þ VGðtÞ − 2ðη � GÞðtÞ ¼ 0 ð2Þ
with initial conditions Gð0Þ ¼ 0 and _Gð0Þ ¼ I, where the
symbol � denotes the time convolution, i.e., ðA � BÞðtÞ ¼R
t
0 dτAðt − τÞBðτÞ. Here ηðtÞ ¼ R

dωIðωÞ sinωt is the dis-
sipation kernel dependent on the environmental spectral
density IðωÞ, where IðωÞ ¼ P

αI
ðαÞðωÞ and IðαÞðωÞ ¼P

k C
ðαÞT
k CðαÞ

k δðω − ωkÞ=ð2mkωkÞ. In this model, coeffi-
cients in Eq. (1) are given by ΠðtÞ¼0, ΦðtÞ¼
ð _GðtÞG̈ðtÞ

GðtÞ
_GðtÞÞ, and ΣðtÞ ¼ ð σð0;0ÞðtÞσð1;0ÞðtÞ

σð0;1ÞðtÞ
σð1;1ÞðtÞ Þ, where matrices

σðn;mÞ are determined by σðn;mÞðtÞ ¼ R
t
0 dt1

R
t
0 dt2G

ðnÞðt1Þ
νðt1 − t2ÞGðmÞðt2Þ and the noise kernel νðtÞ ¼P

α

R
dωIðαÞðωÞ cothðω=2kBTαÞ cosðωtÞ [52].

Existence conditions of localized modes.—We search for
conditions that maintain the Green function GðtÞ, since
dissipationless dynamics will appear if the Green function
GðtÞ shows a nonvanishing behavior; otherwise, the system
would experience a full decay, as seen from Eq. (1).
Without loss of generality, we assume the coupling strength

can be written as CðαÞ
ik ¼ gC0ðαÞ

ik , where g is the global

coupling strength and C0ðαÞ
ik describes the local microscopic

details. Meanwhile, we consider the environmental spec-
trum that contains a gap between 0 and ωc, i.e., the spectral
density IðωÞ ¼ 0 when ω is inside the gap [Fig. 1(b)]. Such
a band-gapped spectrum can be achieved by utilizing the
environment engineering, e.g., photonic crystals [53–56].
Results of other spectrums can also be obtained with small
modifications to our theory.
The matrix GðtÞ can be solved using the Laplace

transform, and we find G̃ðsÞ ¼ ½s2I þ V − 2η̃ðsÞ�−1, where
the notation f̃ is used to denote the Laplace transformation
of the function f. We introduce the eigenvalue function
λkðs; gÞðk ¼ 1; 2;…; NÞ, which denotes the kth eigenvalue
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FIG. 1. (a) Illustration of the general Gaussian network of
open oscillators. Here N interacting oscillators (blue spheres) are
bilinearly coupled with bosonic reservoirs, while each reservoir
consists of different noninteracting bosonic modes (red spheres).
(b) Band-gapped structure of the environment spectrum.
(c) Localized mode status. The kth localized mode presents
above the critical coupling line (blue solid line). Meanwhile,
the system becomes dynamically unstable in the regime that fails
to meet the stability condition (above the red dashed line).
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of G̃−1ðs; gÞ ¼ s2I þ V − 2g2η̃0ðsÞ. Here η̃ðsÞ ¼ g2η̃0ðsÞ.
The order of eigenvalues can be defined by using the
eigendecomposition G̃−1ðs; gÞ ¼ Uðs; gÞΛðs; gÞUþðs; gÞ,
where we fix the order of eigenvalues for a specific s0,
g0 and require that both Λðs; gÞ and Uðs; gÞ be continuous
for s and g. This creates correspondences of eigenvalues
between different s’s and g’s. Under this definition, the
function λkðiy; gÞ is monotonically decreasing for both y ∈
ð0;ωcÞ and g, while λkðx; gÞ is monotonically increasing for
x ≥ 0 [57]. We note that the condition λkð0; gÞ > 0 should
be satisfied by physical systems which can be properly
described by the model in Fig. 1(a). If λkð0; gÞ < 0 for
specific k, a real singular point will present and give rise to
the divergent behavior in GðtÞ. Physically, as we will show
later, a mode with imaginary frequency appears when
λkð0; gÞ < 0. Thus, the total Hamiltonian has no ground
state, and the system will tend towards a state with infinite
negative energy. In this case, the model is dynamically
unstable and should be corrected to avoid this unphysical
feature by including terms previously neglected, e.g.,
the nonlinear term. Outside this unstable region, if we
have λkðiωc; gÞ < 0, there must be one root ωsk such
that λkðiωsk; gÞ ¼ 0. This root is related to an imaginary
singular point of G̃ðsÞ, which produces a nondecay
oscillation in GðtÞ with frequency ωsk, and thus associates
with dissipationless dynamics.
In fact, each imaginary singular point corresponds to a

localized mode with frequency inside the spectral gap. This
can be confirmed by diagonalizing the Hamiltonian into a
set of normal modes, where these modes are combinations
of oscillator modes and bath modes, and their position
operators have the form X0 ¼ uð0ÞX þP

αu
ðαÞQðαÞ. The lth

column uð0Þl of the matrix uð0Þ is determined by the secular

equation ðV −
P

α C
ðαÞTVðαÞ−1

l CðαÞÞuð0ÞTl ¼ ω2
l u

ð0ÞT
l , where

ðVðαÞ
l Þjk ¼ ðω2

l − ω2
kÞδjk and ωl is the lth normal

mode frequency [57]. This equation is equivalent to

G̃−1ðiωlÞuð0ÞTl ¼ 0; thus the singular point iωsk creates a
localized mode with frequency ωsk. This result is quite
different from the bound-state behavior in finite-
dimensional systems, where only bound states in low-
excitation subspaces can be calculated, and dissipationless
dynamics are only understood in the zero-temperature case.
For Gaussian systems, bound states in the whole Hilbert
space can be completely determined, and they form
localized modes which behave as free oscillators. During
the dissipation process, a significant amount of photons
remain in localized modes, while others dissipate into the
environment and, thus give dissipationless dynamics
regardless of the reservoir temperature.
Based on the above discussions, we can now formulate

existence conditions of localized modes. First, if all
reservoirs are neglected, the system behaves as N inde-
pendent effective oscillators with effective frequencies
ω0kðk ¼ 1;…; NÞ given by square roots of eigenvalues

of the coupling matrix V. If the frequency ω0k is inside the
gap ð0;ωcÞ, then the eigenvalue function λkðiy; gÞ will
possess a zero in ð0;ωcÞ, since λkðiω0k;gÞ< λkðiω0k;0Þ¼0;
thus the kth localized mode appears for arbitrary coupling
g. Secondly, if the frequency ω0k is outside the gap ð0;ωcÞ,
there always exists a nonzero critical coupling gck which
satisfies λkðiωc; gckÞ ¼ 0. The corresponding localized
mode presents when the coupling strength g exceeds the
critical value gck [Fig. 1(c)].
Localized modes and dissipationless behavior.—We

next focus on the system dynamics. When the system-
reservoir coupling is below the smallest critical coupling,
no localized mode can present, and the system experiences
a complete decay. In this case, the matrix G̃ðsÞ has no poles,
and we have

GðtÞ ¼ IðtÞ ¼ −
i
π

Z
∞

ωc

dy sin yt½MðyÞ −MþðyÞ�; ð3Þ

where MðyÞ is a N × N matrix. Here we assume that the
spectral density behaves as IðωÞ ∼ ðω − ωcÞα, ω → ωc;
then the transient function IðtÞ vanishes as Oðt−1−αÞ [58].
Consequently, the transition matrix becomes zero, and the
thermal covariance matrix evolves to asymptotic values
determined by reservoirs. The initial distribution finally
disappears, and the system reaches thermal equilibrium
with the environment.
Localized modes appear when the coupling strength is

above the corresponding critical coupling. By including
poles of G̃ðsÞ, we obtain GðtÞ as

GðtÞ ¼ ΩðtÞ þ IðtÞ; ΩðtÞ ¼
X
k

Ωk
γk
ωsk

sinωskt: ð4Þ

Here,ΩðtÞ is the undamped oscillating term associated with
localized modes, where Ωk is the N × N rank-1 projection
matrix, and the coefficient γk is the residue that character-
izes the amplitude of the kth localized mode. The coef-
ficient γk is nonzero if and only if the coupling g is above
the critical coupling gck. Over long times, the transient
function IðtÞ vanishes, and only the undamped oscillation
ΩðtÞ remains. Thus, the system dynamics in the long-time
limit can be described as

ΦðtÞ ∼
X
k

γk
ωsk

�
ωsk cosωskt sinωskt

−ω2
sk sinωskt ωsk cosωskt

�
⊗ Ωk;

ΣðtÞ ∼ Σ0 þ
X
j;k

Σj;kðtÞ þ
X
j≠k

Σj;−kðtÞ; ð5Þ

where Σj;�kðtÞ ¼ Σð0Þ
j;�k exp ½iðωsj � ωskÞt� þ H:c:, and Σ0

and Σð0Þ
j;�k are time-independent coefficients. Exact forms of

coefficients MðyÞ, Ωk, γk, Σ0, and Σð0Þ
j;�k are given in the

Supplemental Material [57].
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The above results show that localized modes give rise to
dissipationless dynamics. Each presented localized mode
contributes a periodic rotation in the phase space, which is
similar to the free evolution of the Wigner function.
Moreover, the thermal covariance matrix ΣðtÞ no longer
reaches an asymptotic value but oscillates with various
frequencies due to the interference between localized
modes. This implies that the system is far from equilibrium
even in the long-time limit.
The weak-coupling limit.—For the weak-coupling case,

where the oscillator-reservoir coupling is weak compared
to the effective frequency, such that g ≪ ω0k, the reservoir
contribution −2η̃ðsÞ in G−1ðsÞ can be viewed as a small
term so that the perturbation method can be applied. The
coupling matrix V can be diagonalized as Vd ¼ PVPþ,
where P is a unitary matrix and ðVdÞjk ¼ ω2

0kδjk. Then we
have G̃−1

d ðiy; gÞ ¼ −y2I þ Vd − 2g2η̃d0ðiyÞ, where G̃−1
d ¼

PG̃−1Pþ and η̃d0 ¼ Pη̃0−1Pþ. In the nondegenerate case,
such that g ≪ jωsj − ωskj for j ≠ k, we can obtain first-
order corrections of eigenvalue functions as λkðiy; gÞ ¼
−y2 þ ω2

0k − 2g2η̃0dkkðiyÞ. This allows us to obtain localized
mode frequencies and critical couplings as

ω2
sk ¼ ω2

0k − g2η̃0dkkðiω0kÞ þOðg4Þ ðω0k < ωcÞ;

g2ck ¼
ω2
0k − ω2

c

2η̃0dkkðiωcÞ
θðω0k − ωcÞ þO(ðω2

0k − ω2
cÞ2): ð6Þ

A clear physical picture can be drawn from this: (i) The
localized mode frequency ωsk is the effective frequency ω0k
plus a negative shift of order OðgÞ, and (ii) the critical
coupling increases as ω0k − ωc when ω0k is above and near
the band edge. Moreover, we can find that γk ¼ 1þOðg2Þ
and UðiωskÞ ¼ I þOðg2Þ when ω0k < ωc. Thus, the decay
process is prohibited, and the system is completely isolated
from the environment in the weak-coupling limit if
all effective frequencies are inside the gap. This is in
contrast to the usual situations, where Markovian dynamics
become dominating and the system experiences the expo-
nential decay.
Cavities in waveguides.—To illustrate our results, we

now present an example of a system with a band-
gapped environment. Such a system can be experimentally
realized in an array of coupled cavities, which are syn-
thesized in optical waveguides [59–68]. Here, each cavity
HSn ¼ ω0aþn an is linearly coupled to a waveguide
HEn ¼

P
kωkb

þ
nkbnk, which consists of an array of linear

defects. For simplicity, we assume that both cavities and
waveguides are identical. The interaction Hamiltonian
is HIn ¼

P
kgkðaþn þ anÞðbþnk þ bnkÞ, with ωk ¼ ω1−

2κ cos kx0 and gk ¼ κ0 sin kx0, where ω1 is the frequency
of linear defects, x0 and κ are the spatial separation and
the hopping rate between adjacent defects, respectively
[39,69]. The coefficient κ0 describes the coupling strength
between the cavity and its adjacent defect. In the tight-
binding approximation, we also consider the interaction

αω0ðaþn þanÞðaþn�1þan�1Þ between adjacent cavities HSn

and HSðn�1Þ, and the interaction β
P

kgkðaþn þ anÞ
ðbþðn�1Þkbðn�1ÞkÞ between the cavity HSn and its adjacent

waveguides HEðn�1Þ, where α and β are the relative
coupling strengths. One can notice that the spectrum of
waveguides shows upper and lower frequency limits, and
there are two continuous gaps outside the energy band.
Each gap can produce a group of localized modes, and their
existence is determined by the matrices G̃−1½iðω1 þ 2κÞ�
and G̃−1½iðω1 − 2κÞ�, respectively. In Fig. 2(a), we show the
localized mode status which agrees with our previous
discussions clearly. An unstable region exists in the
upper-left portion, and its extent is decided by G̃−1ð0Þ.
Below this unstable region, the kth localized mode always
exists if the effective frequency ω0k is inside the environ-
ment band gap ð0;ω0 − 2κÞ or ðω0 þ 2κ;þ∞Þ. Moreover,
there exists a critical coupling line for each localized mode,
which appears above this line.

(a)

(b) (c)

FIG. 2. (a) Localized mode status of cavities in optical wave-
guides. Each critical coupling line is labeledwith the corresponding
mode frequency ωsk�, where the sign� indicates that the localized
mode is inside the band gap ðω1 þ 2κ;∞Þ or ð0;ω1 − 2κÞ.
Localized modes can exist in the region above their corresponding
critical coupling lines. (b) Time evolution of the expectation hx̂1i.
(c) Time evolution of the element σð0;0Þ11 of the thermal covariance
matrix. In panels (b) and (c), blue solid lines (green dashed lines)
correspond to the circumstance where localized modes are present
(absent), with κ0 ¼ 0.05 and ω0 ¼ 0.5 (ω0 ¼ 1). The first cavity is
initially in the coherent state jαi, α ¼ 1, while others are in vacuum
states. All reservoirs have vacuum initial states. In all panels, the
system consists of four cavities, while other parameters chosen are
ω1 ¼ 1, κ0 ¼ 0.05, κ ¼ 0.2, α ¼ 0.2, and β ¼ 0.2.
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The system dynamics is shown in Figs. 2(b) and 2(c).
Clearly, when localized modes present, the system expe-
riences a partial decay and becomes dissipationless after a
long time. In Fig. 2(b), the time evolution of hx̂1i can be
described as the superposition of different periodic
oscillations. This indicates that in the long-time limit,
the system behaves as the combination of several periodic
rotations in the phase space, and each rotation corre-
sponds to a localized mode. Besides, Fig. 2(c) shows that
the system fails to reach the equilibrium with the
environment; instead, there exist periodic energy flows
between them.
Experimentally, localized modes can be produced by

slightly detuning the cavity frequency ω0 from the
defect frequency ω1 by changing the geometrical param-
eters of cavities. Since the waveguide has a very narrow
band, a small detuning is enough to insure the cavity
frequency inside the band gap. For example, in the
coupled-cavity system in photonic crystal slabs, the
typical frequencies of defects and hopping rate are ω1 ¼
0.305 × 2πc=d and κ ¼ 1.5 × 10−3 × 2πc=d, where d is
the lattice period [70]. In order to probe the dynamics, we
can directly measure photon currents flowing over wave-
guides. These photon currents describe the tunneling of
photons between cavities and waveguides, and will
oscillate persistently if localized modes present; other-
wise, they will disappear rapidly, since the system will
reach equilibrium with the environment in a very short
time. Therefore, dissipationless dynamics can be con-
firmed by the observation of nonvanishing oscillating
photon currents.
Conclusion.—In summary, we have presented a general

theory of the dissipationless dynamics for open Gaussian
systems, and shown that dissipationless dynamics is a
universal feature for Gaussian systems with band-gapped
environments. This novel dynamics arises from localized
modes, which are formed as long as effective frequencies of
oscillators are inside the environmental spectrum gap or the
system-environment coupling exceeds the critical values.
Such a feature allows us to suppress environmental noises
by modifying the environment in order to induce localized
modes. Our theory can be applied to most Gaussian CV
protocols and sheds light on the way to protect quantum
resources in the CV quantum information. It also provides a
clue to understanding the non-Markovianity in more
general many-body open quantum systems.
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