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A general method is presented to calculate from first principles the full set of third-order elastic constants
of a material of arbitrary symmetry. The method here illustrated relies on a plane-wave density functional
theory scheme to calculate the Cauchy stress and the numerical differentiation of the second Piola-
Kirchhoff stress tensor to evaluate the elastic constants. It is shown that finite difference formulas lead to a
cancellation of the finite basis set errors, whereas simple solutions are proposed to eliminate numerical
errors arising from the use of Fourier interpolation techniques. Applications to diamond, silicon, aluminum,
magnesium, graphene, and a graphane conformer give results in excellent agreement with both experiments
and previous calculations based on fitting energy density curves, demonstrating both the accuracy and
generality of our new methodology to investigate nonlinear elastic behaviors of materials.
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Third-order elastic constants (TOECs) are important
physical parameters characterizing the nonlinear elastic
behavior of a material [1]. Knowledge of TOECs allows
one to estimate long-wavelength phonon anharmonicities
[2], the generalized Grüneisen parameters [3], and the
intrinsic mechanical strength of a material [1,4]. In this
work, we present a general and accurate method to
calculate from first principles the full set of TOECs of a
material of arbitrary symmetry.
TOECs of bulk materials are typically obtained from

ultrasonic velocity measurements [5]. These experiments
are difficult and produce data with large error margins,
sometimes up to 50% or more [6]. In addition, TOECs are
far more structure sensitive than the second-order elastic
constants (SOECs), and sample quality is known to
introduce variability in the experimental data [2,7–10].
As a result, so far, TOECs have been measured for only
a relatively few bulk materials [2,7–10]. In recent years,
nanoindentation experiments have also been used to probe
linear and nonlinear elastic properties of 2D materials
[11,12]. Unfortunately, these measurements allow one to
extract effective (or averaged) elastic moduli (for a 2D
material treated as a homogeneous and isotropic mem-
brane), whose relationships with the individual SOECs and
TOECs of the crystalline film are unclear [13] and remain a
topic of extensive research [12]. This experimental sit-
uation demands for computational methods to calculate and
predict TOECs, particularly of materials for which experi-
ments cannot be easily or accurately performed.
Methods are available to calculate TOECs from first

principles [9,13–18]. These methods rely on the use of

supercells and finite homogeneous deformations, an energy
scheme to calculate either energy-strain or stress-strain
curves, symmetry relationships to express the energy or
stress versus strain curves in terms of combinations of
SOECs and TOECs, and a fitting procedure to extract the
values of the independent SOECs and TOECs of the
crystalline material. Dating back to the work of Naimon,
Suzuki, and Granato [14], these methods have been applied
mostly to cubic [9,17,18] or hexagonal crystals [13,15,16].
More recently, this type of method was also applied to a
triclinic crystal [9], reaching a satisfactory agreement with
the experimental data. Overall, this body of work has
led to the identification of two major pitfalls of these
methods. First, fitting energy-density (or stress) versus
strain curves with polynomials is an onerous operation,
leading to results that may vary depending on both the
width of the interval of strain values and the convergence of
the density functional theory (DFT) calculations. Second
and most important, these methods are applicable only to
highly symmetric crystals, for which the energy-strain
or stress-strain curves can be conveniently expressed in
terms of a selected number of independent elastic con-
stants. Here, we introduce a novel method based on first-
principles calculations that is both accurate and applicable
to a broad class of systems, including 3D or 2D low-
symmetry crystals, as well as defected and inhomogeneous
materials.
The present method relies on periodic DFT calculations

and the application of finite homogeneous deformations to
a supercell. In this context, we can define the deformation
gradient Fij as

PHYSICAL REVIEW LETTERS 121, 216001 (2018)

0031-9007=18=121(21)=216001(5) 216001-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.216001&domain=pdf&date_stamp=2018-11-21
https://doi.org/10.1103/PhysRevLett.121.216001
https://doi.org/10.1103/PhysRevLett.121.216001
https://doi.org/10.1103/PhysRevLett.121.216001
https://doi.org/10.1103/PhysRevLett.121.216001


Fij ¼
∂xi
∂Xj

¼ V 0
ikV

−1
kj ; ð1Þ

with the first equality providing the general definition of Fij

in terms of spatial (xi) and material (Xj) coordinates and
where V0 and V are 3 × 3 matrices whose columns are the
vectors a⃗01; a⃗

0
2; a⃗

0
3 and a⃗1; a⃗2; a⃗3, defining the geometries of

the supercells and real space lattices of the deformed and
reference materials systems, respectively. Within the frame-
work of finite (or large) strain theory, the symmetric
Lagrangian elastic strain εij is defined as [1]

εij ¼
1

2
ðFkiFkj − δijÞ; ð2Þ

with δij the Kronecker delta, whereas the internal energy U
at fixed entropy to third order in strain is written as follows:

U ¼ 1

2!

∂2U
∂εij∂εlm εijεlm þ 1

3!

∂3U
∂εij∂εlm∂εpq εijεlmεpq

¼ 1

2
Cð2Þ
ijlmεijεlm þ 1

6
Cð3Þ
ijlmpqεijεlmεpq; ð3Þ

where Cð2Þ
ijlm and Cð3Þ

ijlmpq are the SOECs and TOECs,
respectively, of the material at the unstressed reference
state. Cauchy stress σij and second Piola-Kirchhoff
(2nd-PK) stress Plm are related to each other via the
following equation:

σij ¼
V
V 0 FilPlmFjm; ð4Þ

where V 0 and V are the volumes of the deformed and
reference supercells, respectively, and the 2nd-PK stress
tensor is written in terms of elastic constants and
Lagrangian strain as [1]

Pij ¼ Cð2Þ
ijlmεlm þ 1

2
Cð3Þ
ijlmpqεlmεpq: ð5Þ

The equations above constitute the basis of our method
to calculate TOECs by using periodic DFT calculations.
In particular, we select the value of the Lagrangian strain
tensor, and we use Eqs. (2) and (1) to derive Fij and V 0

ik.
Then, we use a periodic DFT scheme to calculate the
Cauchy stress tensor of the supercell accommodating
the deformation. Equation (4) is then used to derive the
2nd-PK stress tensor, and numerical differentiation of
Eq. (5) is carried out to calculate the values of both the
SOECs and TOECs. In particular, using Voigt’s notation

(Cð2Þ
ijlm ↔ Cð2Þ

αβ and Cð3Þ
ijlmpq ↔ Cð3Þ

αβγ , where the Greek indi-
ces run from 1 to 6, with xx → 1, yy → 2, zz → 3, yz → 4,
xz → 5, and xy → 6), the finite difference formula to
calculate a SOEC is

Cð2Þ
αβ ¼ ∂Pα

∂εβ ¼ P
ðþΔεβÞ
α − P

ð−ΔεβÞ
α

2Δεβ
; ð6Þ

where P
ð�ΔεβÞ
α is the component α of the 2nd-PK tensor of

the supercell accommodating the finite strain �Δεβ. To
calculate TOECs, we have two cases. First, when at least
two out of three indices are equal, we can use

Cð3Þ
αββ ¼

∂2Pα

∂2εβ
¼ P

ðþΔεβÞ
α þ P

ð−ΔεβÞ
α − 2Pð0Þ

α

Δεβ2
; ð7Þ

where Pð0Þ
α refers to the component of the 2nd-PK stress

tensor of the unstressed reference material. Second, when
β ≠ γ, we use

Cð3Þ
αβγ ¼ ðPðþΔεβ ;þΔεγÞ

α − P
ð−Δεβ ;þΔεγÞ
α − P

ðþΔεβ ;−ΔεγÞ
α

þ P
ð−Δεβ ;−ΔεγÞ
α Þ=4ΔεβΔεγ; ð8Þ

where the elements of the 2nd-PK tensor are computed for a
deformed supercell accommodating two types of finite
deformation, �Δεβ and �Δεγ . Equation (6) has been used
to calculate SOECs from first principles [15,16]. Here, we
show that second-order numerical differentiation of the
2nd-PK stress tensor allows one to design an efficient,
accurate, and general method to calculate the full set of
TOECs of a material from first-principles calculations. In
this method, each elastic constant is calculated independ-
ently, by using either Eq. (7) or Eq. (8), by carrying out a
minimal number of calculations. Symmetry relations can be
exploited to reduce the number of calculations or, as in the
present work, to verify the correctness of the method
implementation. In the following, we validate and apply
an implementation of our method based on the use of a
conventional pseudopotential plane-wave DFT approach
[19]. All DFT calculations here presented are carried out
using primitive unit cells, dense uniform meshes of k points
to sample the Brillouin zones, norm-conserving pseudo-
potentials [20], and a generalized gradient approximation
for the exchange and correlation energy functional [21].
In all calculations, atomic positions are relaxed and fully
optimized using a convergence threshold on the total force
of 10−6 a:u: At the end of each calculation, ions occupy
fixed positions, and the temperature is 0 K. Further
technical details of the calculations are provided in the
figure and table captions.
To demonstrate the validity and accuracy of our method,

we consider the case of diamond, whose TOECs have been
repeatedly measured and calculated over the past years
[9,10,16]. Figure 1 shows the energy density and compo-
nent P1 ↔ Pxx of the 2nd-PK stress tensor of a diamond
crystal at 0 K under uniaxial strain in the x direction. These

energy and pressure data allow one to calculate Cð2Þ
11 and
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Cð3Þ
111 [9,10,16]. A fitting of the energy curve gives values of

1037 and −5876 GPa, respectively. Identical results are
derived from Eqs. (6) and (7) by using the values of P1 for
the unstressed crystal and those obtained with a percent
uniaxial strain of either �0.5% or �1% (Fig. 1). These
results show that finite differentiation of the 2nd-PK tensor
is a viable technique to calculate both SOECs and TOECs.
Periodic DFT schemes are based on expanding the wave

functions in terms of a truncated basis set, most commonly
a plane-wave basis set [19,22]. In plane-wave-based DFT
methods, the stress tensor is calculated as a derivative of the
energy at a fixed number of plane waves [15,22] and not at
a fixed energy cutoff [23–25]. Consequently, when using
moderate plane-wave energy cutoffs, the diagonal elements
of the Cauchy stress tensor are underestimated by the so-
called Pulay corrective terms [23–25]:

σpij ¼ −
2

3

∂E
∂ lnEc

δij; ð9Þ

where Ec is the plane-wave energy cutoff and E is the
energy per unit volume.
Figure 2 shows the value of Cð3Þ

144 of diamond obtained by
using Eq. (7) and employing stress tensors obtained from
DFT calculations of unstressed and shear strained super-
cells at increasing energy cutoffs Ec. In particular, we use
finite shear strains of Δε4 ¼ �0.005, and we calculate the
selected TOEC by using 2nd-PK stress tensors that are
calculated by either accounting or not for the Pulay
corrective terms in Eq. (9). The results in Fig. 2 show that

the value of Cð3Þ
144 is subjected to large errors, regardless of

the Pulay corrections, thereby showing that these errors do
not arise from the use of a finite basis set or the stress
formalism implemented in our DFT scheme. Figure 2
and additional calculations show also that these errors

do not decrease in a regular manner for increasing Ec
and that they tend to be larger for small-valued TOECs.
Interestingly, such a variability of results has also been
obtained by using methods based on fitting energy-density
versus strain curves.
The errors in Fig. 2 resulting from using Eq. (7) to

calculate a small-value TOEC are algorithmic in nature.
DFT methods based on plane waves utilize both a truncated
discrete Fourier space and uniform real-space grids to store
the value of wave functions and the charge density and
calculate the terms of the total energy, forces, and stress
[15,19,22]. Because of the use of real-space grids, small
differences in the stress components arise when, in the case
of crystals with a complex basis, the positions of the atoms
within the supercell shift across the mesh of real-space
points (Fig. 3). These differences become noticeable when
we compare the stress tensor of an unstressed and shear
strained crystal such as diamond (Fig. 3) or silicon. In these
cases, a shear deformation leads to a breaking of the crystal
symmetries, causing atoms in the unit cell to relax, change
relative positions, and form inequivalent bonds [15,26].
At a fixed energy cutoff, atoms within the unit cell of an
unstressed crystal (typically) sits on top of points of the
real-space grid, whereas such an alignment with grid points
is lost in supercells accommodating a (shear) strain and a
nonzero internal stress (Fig. 3). In brief, this shows that a
plane-wave DFT calculation of an unstressed crystal
differs, in numerical terms, from the calculations executed
for the shear deformed states (Fig. 3). Differences in the
numerical treatment translate into errors that can greatly
affect the values of TOECs determined from stress-strain
curves and numerical differentiation techniques (Fig. 2).
To eliminate the numerical errors resulting from the use

of Eq. (7) and plane-wave-based DFT methods, we propose
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FIG. 1. Energy density U [Eq. (3)] of diamond versus normal
uniaxial (Lagrangian) strain ε1. Inset: Component P1 of the
2nd-PK stress tensor versus ε1. Colored disks show the results
obtained from DFT calculations [19] using an energy cutoff of

300 Ry. Solid lines are guides to the eye. To calculate Cð2Þ
11 and

Cð3Þ
111, we use the value of P1 at the unstressed state (large black

disk) and those obtained at either ε1 ¼ �0.005 or ε1 ¼ �0.010
(circles).
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FIG. 2. Cð3Þ
144 of diamond obtained from Eq. (7) by using values

of P1 calculated by DFT at increasing energy cutoffs. Cð3Þ
144 is

calculated by using the value of P1 at an unstressed state and
values of P1 of crystals accommodating a shear strain of
ε4 ¼ �0.005. The blue (black) solid line shows the results
obtained by (not) including in the Cauchy stress the Pulay
corrective terms of Eq. (9). The red dashed line shows the results
obtained by replacing P1 at the unstressed state in Eq. (7) with
the value obtained by extrapolation from the values of P1 at
ε4 ¼ �0.005 and �0.010.
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two simple solutions. First, instead of using the compo-

nents Pð0Þ
α computed by DFT for the unstressed state, in

Eq. (7), we use values P̃ð0Þ
α , obtained by the extrapolation of

values P
ð�ΔεβÞ
α , calculated for systems accommodating a

small finite strain. As shown in both Figs. 2 and 3, this
solution gives excellent results, yielding values of small-
value TOECs that converge rapidly with the energy cutoff.
Second, the numerical trick above is needed, or can be
applied, to calculate the three TOECs with equal indices. In
all other cases, any TOEC can be calculated by using

Eq. (8), as, for instance, Cð3Þ
αββ ¼ Cð3Þ

βαβ. Equation (8) allows
one to estimate a TOEC with at least two unequal indices,
without needing information about the unstressed state, and
thus by using components of stress tensors computed under
very similar “algorithmic” conditions. In the following

applications of this method to calculate TOECs, we have
adopted both solutions and verified that, within a few
percent errors, they give the same results.
We use our method to calculate SOECs and TOECs at

0 K of three cubic crystals, namely, diamond, silicon, and
aluminum, and one hexagonal crystal, that is, magnesium.
The calculated SOECs and TOECs are reported in Table I
together with experimental data measured at a finite
temperature. Our results shown in Table I compare well
with both experimental data [3,6–8,10,27] and previous
DFT calculations [9,10]. The agreement with the experi-
ments is very good in the case of silicon and the metals,
whereas it is satisfactory in the case of diamond, for which
the reported data show large variations and experimental
uncertainties (Table I). In addition to applications to 3D
crystals, we also use our method to calculate SOECs and
TOECs at 0 K of two 2D crystals, namely, graphene [13,28]
and washboard graphane [28], a conformation of a fully
hydrogenated graphene layer exhibiting a well-defined and
regular arrangement of H atoms [28]. The latter 2D crystal
has orthorhombic symmetry, with a rectangular unit cell
containing four C—H bonds. Our method gives values of
the SOECs and TOECs of these two 2D materials (Table II)
that are in agreement with results of recent DFT calcu-
lations [28]. Experimental elastic constants are available
only for graphene and a few other 2D membranes [11,12].
The most accredited value for the 2D Young’s modulus of
graphene is ∼340 N=m, although values between 20 and
700 N=m have also been reported [12]. Experimental
estimates for the nonlinear elastic stiffness of graphene
are also available [11,12]. However, these elastic constants
are extracted by fitting force versus indentation depth
curves, and thus they cannot be directly compared to our
calculated TOECs. Overall, our results in Table II show that
our method can be used to predict SOECs and TOECs of
complex materials such as graphane, for which the exper-
imental determination of its elastic constants would be
difficult to achieve. Furthermore, it is to be noted that our
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FIG. 3. Component P1 of the 2nd-PK stress tensor of a
diamond crystal accommodating a shear strain ε4. Disks show
results obtained from DFT calculations carried out using energy
cutoffs of 100 (blue and black) and 200 Ry (red), with atoms in
the unstressed primitive unit cell having fractional coordinates
(0,0,0) and (0.25,0.25,0.25) (blue) and ðx; y; zÞ and ð0.25þ
x; 0.25þ y; 0.25þ zÞ (black and red), where x, y, z are random
numbers in the interval (0,1). Insets: Schematic representations of
unstressed (blue and black) and shear strained (red) unit cells,
with lattice coordinates that are (blue) or are not (black and red)
aligned with the real-space grid of points used to represent wave
functions in plane-wave-based DFT calculations.

TABLE I. Independent SOECs and TOECs (in GPa) of diamond, silicon, aluminum, and magnesium obtained by using Eqs. (6)–(8)
and the numerical solutions described in the text. Experimental data are also shown for comparison. DFT calculations are carried out by
using energy cutoffs of 100 (diamond and silicon), 50 (aluminum), and 30 Ry (magnesium). All calculations are carried out by using
stringent convergence thresholds, and in the case of the metals, we use fractional occupations and a smearing energy of 0.02 Ry.

Cð2Þ
11 Cð2Þ

33 Cð2Þ
66 Cð2Þ

44 Cð2Þ
13 Cð2Þ

12 Cð3Þ
111 Cð3Þ

112 Cð3Þ
113 Cð3Þ

222 Cð3Þ
123 Cð3Þ

133 Cð3Þ
333 Cð3Þ

144 Cð3Þ
155 Cð3Þ

344 Cð3Þ
456

Diamond 1037 � � � � � � 552 � � � 120 −5876 −1593 � � � � � � 618 � � � � � � −197 −2739 � � � −1111
Exp. Ref. [10] 1082 � � � � � � 579 � � � 125 −7750 −2220 � � � � � � 604 � � � � � � −1780 −2800 � � � −30
Exp. Ref. [6] � � � � � � � � � � � � � � � � � � −7603 −1909 � � � � � � 835 � � � � � � 1438 −3938 � � � −2316
Silicon 142 � � � � � � 72 � � � 51 −744 −393 � � � � � � −59 � � � � � � 4 −297 � � � −59
Exp. Ref. [27] 166 � � � � � � 80 � � � 64 −795 −445 � � � � � � −75 � � � � � � 15 −310 � � � −86
Aluminum 108 � � � � � � 33 � � � 59 −1100 −371 � � � � � � 104 � � � � � � 39 −421 � � � −22
Exp. Ref. [7] 107 � � � � � � 28 � � � 60 −1076 −315 � � � � � � 36 � � � � � � −23 −340 � � � −30
Magnesium 58 62 17 16 19 24 −602 −190 4 −762 −55 −107 −657 −60 −50 −163 � � �
Exp. Ref. [8] 59 62 17 16 � � � 26 −663 −178 30 −864 −76 −86 −726 −30 −58 −193 � � �
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method gives the values of all the elastic constants, not only
the independent ones. For instance, Table II reports the cal-

culated value of −639 Nm−1 for Cð3Þ
244, whereas using sym-

metry relations, its value should be ð2Cð3Þ
111 − Cð3Þ

222 − Cð3Þ
112Þ=

4 ¼ −629 Nm−1. These checks allow one to estimate a
percent error on all elastic constants obtained with our
method of about �2%.
In conclusion, we have presented a method to calculate

TOECs based on the numerical differentiation of the
second Piola-Kirchhoff stress tensor. When used in con-
junction with a periodic first-principles approach, our
method allows us to predict the full set of TOECs,
regardless of the symmetry and structure of the periodic
3D or 2D material. Each elastic constant is calculated
independently, by carrying out up to four first-principles
calculations. In this work, we have adopted a plane-wave
DFT scheme to calculate stress values, and we have put
forward simple solutions to overcome the errors resulting
from the use of a truncated basis set and real-space grids.
The applications to 3D and 2D crystals have demonstrated
both the validity of our solutions and the overall accuracy of
our method. This method and the ability to calculate the
values of TOECs from first principles, not necessarily a
plane-wave-based DFT approach, will allow one to predict
nonlinear elastic behaviors of complex materials such as
alloys, defected crystals, and 2D films [29], thereby
impacting areas such as nanomechanics [29], nonlinear
acoustics, and mechanical engineering.
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