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The concept of dielectric-laser acceleration provides the highest gradients among breakdown-limited
(nonplasma) particle accelerators. However, stable beam transport and staging have not been shown
experimentally yet. We present a scheme that confines the beam longitudinally and in one transverse
direction. Confinement in the other direction is obtained by a single conventional quadrupole magnet.
Within the small aperture of 420 nm we find the matched distributions, which allow an optimized injection
into pure transport, bunching, and accelerating structures. The combination of these resembles the
photonics analogue of the radio frequency quadrupole, but since our setup is entirely two dimensional, it
can be manufactured on a microchip by lithographic techniques. This is a crucial step towards relativistic
electrons in the MeV range from low-cost, handheld devices and connects the two fields of attosecond
physics and accelerator physics.
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Since dielectric-laser acceleration (DLA) of electronswas
proposed in 1962 [1,2], the development of photonic
nanostructures and the control of ultrashort laser pulses
has advanced significantly (see Ref. [3] for an overview).
Phase synchronous acceleration was experimentally dem-
onstrated first in 2013 [4,5]. Damage threshold limited
record gradients, more than an order of magnitude higher
than in conventional accelerators, were achievedmeanwhile
for both relativistic [6] and low-energy electrons [7]. These
gradients, so far, express themselves only in the generation
of energy spread, not as a coherent acceleration. Moreover,
the interaction length is limited to the Rayleigh length, after
which the electron beam defocuses and hits the small
(submicrometer) aperture. During synchronous accelera-
tion, there are additional defocusing forces which cannot be
overcome by magnetic focusing only [8] since equivalent
magnetic focusing gradients would have to be in the MT/m
range [9].
In this Letter we solve this outstanding problem with a

laser-based scheme which allows transport and acceleration
of electrons in dielectric nanostructures over arbitrary
lengths. It is applicable to changing DLA period lengths,
which is required to accelerate subrelativistic electrons.
Moreover, we find the maximum tolerable emittances and
beam envelopes in DLA beam channels. Another substan-
tial advancement of our scheme is ballistic bunching of

subrelativistic electrons down to attosecond duration, while
the beam remains transversely confined. Thus, our scheme
makes DLA scalable, which paves the way for a low-cost
accelerator on a microchip, providing electrons in the MeV
range from a small-scale, potentially handheld device.
Our scheme uses only one spatial harmonic, namely, the

synchronous one, but its magnitude and phase change along
the DLA grating. This is interpreted as a time dependent
focusing potential. A focusing concept using nonsynchro-
nous spatial harmonics of traveling waves was presented by
Naranjo et al. [10]. They derived stability due to retracting
ponderomotive forces from the nonsynchronous spatial
harmonics, while the synchronous one serves for acceler-
ation. Our description is in the comoving real space, as
compared to Naranjo’s description in the spatial frequency
domain. This supports changes of all grating-related quan-
tities, while the Courant-Snyder (CS) theory [11] from
conventional accelerator physics is still applicable. Stable
beam confinement is achieved by alternating-phase focus-
ing (APF), which had already been developed in the 1950s
for ion acceleration [12–14]. However, the later developed
radio frequency quadrupole (RFQ) cavities turned out to
have better performance, especially for high current beams.
Thus, APF was rejected in favor of the RFQ and was only
rarely implemented [14]. In the 1980s APF was also
proposed for grating-based linacs [15–18], but these
three-dimensional designs are hardly feasible at optical
wavelengths. Since 3D structures such as RFQs or rotated
gratings are not feasible for lithographic fabrication on a
microchip, we present an entirely two-dimensional APF
scheme in this Letter, enabling stable and almost lossless
electron transport in high-gradient DLA.
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We use standing wave dual pillar structures [7] as shown
in Fig. 1, but our scheme can also be applied to Bragg
cavity structures [19]. The z-polarized lasers, incident from
both lateral sides, are modeled as plane waves with wave-
length λ0 ¼ 2 μm. In practice, they can be realized as pulse-
front-tilted profiles [20–23] or on-chip wave guide systems
[24]; see the Supplemental Material [9] for details. The
tilted pulses appear to a single or a few electron bunches as
a plane wave; however, the pulse duration impinging on
each pillar is significantly reduced, and thus the damage
threshold field strength is increased [25,26]. The
Hamiltonian for single particle motion in the DLA is [27]

H ¼ 1

2meγ
½p2

x þ p2
y þ ðΔpz=γÞ2� þ V; ð1Þ

where γ ¼ ð1 − β2Þ−1=2 is the reference mass factor, me the
electron mass, px, py the transverse momenta, and Δpz the
deviation of longitudinal momentum from the reference
particle at fixed laser phase (the black dot in Fig. 1). In [27]
we showed by means of the Panofsky-Wenzel theorem [28]
that the time dependent potential can be written as (see also
the Supplemental Material [9])

V ¼ qIm

�
e1

�
λg
2π

cosh

�
ωy
βγc

�
e2πis=λg − iseiφs

��
; ð2Þ

where ω ¼ 2πc=λ0 is the laser angular frequency, q is the
(negative) electron charge, and s is the distance of the
particle behind the reference particle. The field strength of
the resonant harmonic with the Wideroe condition λg ¼ βλ0
is e1; i.e., with no loss of generality we work with the first
(usually the strongest) spatial harmonic. The parameters
e1, φs, β, γ, and λg are allowed to vary with the timelike cell
index n. The synchronous phase φs determines the energy
gain of the reference particle as a function of the cell
number (the acceleration ramp) as

WkinðNÞ ¼ Wkin;0 þ q
XN
n¼1

λðnÞg RefeðnÞ1 eiφ
ðnÞ
s g; ð3Þ

where Wkin;0 ¼ 83 keV is the injection energy. The cell
lengths increase according to the Wideroe condition as

λðnþ1Þ
g − λðnÞg

λ0
¼ βðnþ1Þ − βðnÞ ¼ qλ0RefeðnÞ1 eiφ

ðnÞ
s g

mec2γðnÞ
3 :

For a given structure the synchronous phase is thus

determined as φðnÞ
s ¼ φ0 − argðe1ÞðnÞ, where

φ0 ¼ arccos

�
mec2

qλ0

γ3

je1j
Δλg
λ0

�
: ð4Þ

In this Letter we use optimized structures which provide φ0

independent of n at an arbitrary chirp parameter Δλg, such
that the synchronous phase φs can be switched by a
particular drift from one grating segment to another.

Tying the phase argðe1ÞðnÞ to λðnÞg does not avoid a small

drift in the normalized amplitude jeðnÞ1 =ELj ≈ 0.34…0.39
(see the Supplemental Material [9]), which is taken into
account in the ramp [Eq. (3)].
Earnshaw’s theorem dictates that constant focusing

cannot be achieved in all three spatial directions simulta-
neously [29]. Thus, at least two focusing directions have to
be alternating. In conventional Alvarez linacs or in syn-
chrotrons constant focusing is applied in the longitudinal
direction and alternating quadrupole lattices provide trans-
verse confinement [30]. In our APF scheme, we apply the
alternation to the disjoint focusing phase ranges of the
longitudinal plane and the noninvariant transverse plane
(y). Jumping the reference particle by means of a fractional
cell drift between the orange circles in Fig. 2 provides
stable transport at constant energy, and between the red dots
we additionally obtain acceleration. The strong acceleration
defocusing in y is compensated by acceleration focusing at
the longitudinally unstable phase. In the invariant x
direction a single conventional quadrupole magnet [9]
suffices to confine the beam to an area in the center of
the structure height, where the laser fields are homo-
geneous, i.e., do not depend on x.

FIG. 1. (Top panel) Schematic view of a dual pillar DLA
structure and a particle bunch around a reference particle and
(bottom panel) simulation of the longitudinal time harmonic
electric field.

FIG. 2. Overview of electron acceleration and focusing proper-
ties as a function of phase. The circles denote the fixed points for
different φs.
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We find the fixed points of the motion by setting∇V ¼ 0
as sf1 ¼ φsλg=2π and sf2 ¼ −λg=2π½φs þ 2 argðe1Þ� and
define Δs1 ¼ s − sf1 and Δs2 ¼ s − sf2. Note that in the
longitudinal plane for argðe1Þ ¼ 0 the fixed point sf1 is
elliptic and sf2 is hyperbolic, and vice versa in the trans-
verse plane. Expanding V to second order and omitting
constant terms shows the APF principle:

Vðx; y; s ¼ sf1 þ ΔsÞ ¼ −Vðx; y; s ¼ sf2 þ ΔsÞ

¼ qje1jλg
2π

�
1

2

�
ωy
βγc

�
2

−
1

2

�
2π

λg
Δs

�
2
�
sinðφ0Þ; ð5Þ

i.e., switching between sf1 and sf2 with Δs ¼ Δs1 ¼ Δs2
flips the sign of the potential. Only the nonaccelerating case
(φ0 ¼ π=2) provides two interchangeable buckets, whereas
a π-shifted version of the accelerating bucket will be
decelerating and unstable due to a mismatch with the
ramp. Hill’s equations of the linearized motion are found
from Eqs. (1) and (5) as

y00 þ Ky ¼ 0; ð6aÞ
Δs00 − KΔs ¼ 0; ð6bÞ

where K ¼ jqωe1=ðmeβ
3γ3c3Þj sinðφsÞ. Note that lineari-

zation leads to decoupling of the nonlinear equations of
motion, which are coupled due to Eq. (2). The segments
between two phase shifts are enumerated by P such that

argðe1ÞðPÞ ¼
�
0; P odd;

2φ0; P even
ð7Þ

leads to a sign alternation in the focusing function K in
Eq. (6). In order to switch between the two fixed points we
take short drift sections denoted by l and model the lattice
as thick lenses of lengths Lf and Ld. Each lattice cell
consists of two segments and has p transverse focusing and
p transverse defocusing elements; thus, its length is given
by L ¼ Lf þ lf þ Ld þ ld, where

Lf ¼
Xp
n¼1

λðnÞg ; Ld ¼
X2p

n¼pþ1

λðnÞg ; ð8aÞ

lf ¼ð2π−φðpÞ
s ÞλðpÞg =π; ld ¼ðπ−φð2pÞ

s Þλð2pÞg =π: ð8bÞ

The solution to Eq. (6) is found by applying the CS
formalism [11] to the channel of thick focusing (F) and
defocusing (D) elements. We start with a nonaccelerating
transport structure, i.e., φ0 ¼ π=2, where the lattice cells
are strictly periodic. In a long lattice cell (p ≫ 1) we can
neglect the drift sections and represent it as [9]

Mðz; LÞ ¼
�
MfðzÞ; 0 < z < L=2;

Mdðz − L=2ÞMfðL=2Þ; L=2 < z < L;

with the length L ¼ ð2pþ 1Þλg. The phase advance per
cell σ is given for a strictly periodic FD-cell by

cosðσÞ ¼ 1

2
TrfMðL;LÞg ¼ cos

� ffiffiffiffi
K

p
L

2

�
cosh

� ffiffiffiffi
K

p
L

2

�
:

The CS parameters η ¼ ðβ̂; α̂; γ̂ÞT are mapped from one
point to another by the matrix T (see the Supplemental
Material [9]) and fulfill the eigenvector relation ηe ¼ Tηe for
their initial values. For small σ the constant β̂ function in the
smooth approximation is found from hβ̂i ¼ L=σ. However,
the most critical issue in DLA is to match a given emittance
to the tiny aperture. Thus, the maximum of the β̂ function,
which appears at L=4, needs to be minimal (see Fig. 3). The
only variable parameter in an experimental setup is the laser
field strength. Its tuning range from maximal admissible
beam size to the structure damage threshold [25,26] is
indicated by the black arrow. The evolution of the transverse
phase space is shown below, where the particles were
initially arranged on a Cartesian grid and only the long-
term surviving ones are displayed in red. For simplicity, this
simulation starts at L=4 in order to avoid correlations in the
conjugate variables. This plot uses zero bunch length, but
stability is also attained for an unbunched beam; see the
video in the Supplemental Material [9]. The blue ellipses
indicate the strictly periodic linear case, which is slightly
smaller in area due to the cosh potential in Eq. (2) being

FIG. 3. (Top panel) Contours of β̂max ¼ β̂ðL=4Þ in the ðje1j; LÞ
plane. The arrow indicates the laser amplitude dependent tuning
range. (Bottom panel) The transverse phase space evolution
(parameters at the black dot on top) of particles, not hitting the
aperture (�0.21 μm) within 1200 DLA cells, is shown as every
two DLA cells. The blue ellipses are the linear theory, at
minimum and maximum beam size.
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steeper than the square well in Eq. (5). In the linear case the
single particle emittances are invariants

εðy; y0Þ ¼ γ̂y2 þ 2α̂yy0 þ β̂y02; ð9aÞ

εLðΔs;Δs0Þ ¼ γ̂LΔs2 þ 2α̂LΔsΔs0 þ β̂LΔs02; ð9bÞ

where Δs0 ¼ ΔW=ðmeγ
3β2c2Þ, and we introduce longi-

tudinal CS functions as a half lattice cell shift of the
transverse ones, ηLðzÞ ¼ ηðz − L=2Þ.
An accelerating lattice can be attained by taking the initial

values from the eigenvalue solution and successively multi-
plying the segment maps as ηN ¼ TN…T1ηe to it. In non-
periodic lattices the longitudinal CS functions have to be
calculated individually with the same procedure. If the
change in length from one period to another is small, the
β̂ function can be approximated by the eigenvalue solution in
each cell,which is, however, discontinuous at the boundaries.
The line of increasing minimum of β̂max in Fig. 4 is followed
only approximately. The increase is counteracted by

adiabatic emittance damping due to momentum conserva-
tion. Altogether the beam envelope can be written as [30]

aðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̂ðzÞ ε0β0γ0

βðzÞγðzÞ

s
; ð10Þ

where the 0 indices denote initial values. Acceleration from
83 keV to 1 MeVat φ0 ¼ 4π=3, with an average gradient of
187 MeV=m and 500 MV=m incident laser field strength
from both sides, is shown to be well confined within the
physical aperture of �0.21 μm in Fig. 5. The analytical and
numerical results coincide for infinitesimally low emittance.
At small but achievable emittances [31,32], we obtain 56%
transmission for ε0 ¼ 100 pm (see the video in the
Supplemental Material [9]), and 93% for ε0 ¼ 25 pm. The
phase space density at top energy is plotted in Fig. 6, where
ΦP andΔW are the longitudinal coordinates in the comoving
(Galilean) laboratory frame. As in Fig. 3, the initial particle
positions in Fig. 6 (left panel) are arranged on a Cartesian
grid, and only the ones thatmake it to 1MeVare drawn in red.
The blue ellipse corresponds to an initially matched bunch
adjusted to the area of the surviving particles. Note that this
size is slightly reduced at finite transverse emittance; thus,we
choose σz ¼ 10 nm. Below this bunch length the trans-
mission depends only on the initial transverse emittance, i.e.,
is fully scalable.
The APF scheme discussed here can also be used to

attain the bunching needed to inject into the accelerator
structure. Creating and removing sinusoidal energy spread
(see the Supplemental Material [9] and the video therein)
results in extremely short (attosecond) bunch lengths at
acceptably low energy spread. The phase alternation addi-
tionally provides transverse confinement, which can be
matched to the initial CS functions of the accelerator. The
particles not captured are defocused, while the captured
ones remain at small longitudinal and transverse ampli-
tudes, within the limits of Liouville’s theorem. The phase

FIG. 4. Contours of β̂max ¼ β̂ðL=4Þ in the ðβ; LÞ plane. The
designed accelerator lattice is a trade-off between following the
minimum and minimizing the mismatch at the jumps.

FIG. 5. Analytical [Eq. (10)] and numerical (rms) beam
envelopes, scaled to identical initial beam size at ε ¼ 100 pm.
(Inset) Enlargement of the beginning.

FIG. 6. (Right panels) Phase space after acceleration of a
Gaussian bunch up to 1 MeVand (left panel) transmittable initial
longitudinal distribution at 83 keV for y ¼ y0 ¼ 0. The blue
ellipse represents a linearly matched bunch with a total bunch
length 4σz ¼ 40 nm.
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space after the buncher is plotted in Fig. 7. Both ellipses are
matched for the injection into the accelerator (the blue
ellipses in Figs. 7 and 6 are identical). Before the buncher
the energy spread is σΔW ¼ 16 eV. The initial longitudinal
emittance equals the final one in the ellipse which has 25%
of the particles captured. The duration is decreased to 4%
(≈260 as), whereas the energy spread is increased by the
same ratio. The initial CS functions are determined by
inverse mapping of the desired final values for the accel-
erator. Additionally to the injection into DLAs, these short
bunches are also very promising for ultrafast time-resolved
electron microscopy.
In conclusion, we developed a scheme that makes DLA

fully scalable. We showed for the first time how a focusing
lattice, which relies on APF only, can be integrated. The
entire accelerator or parts such as a single focusing stage or
the buncher can now be experimentally approached.
Acceleration of sub-100 keV electrons from readily avail-
able sources up to the MeV range with gradients of several
100 MeV=m works with transmission rates well above
90%. The admissible synchronous phase is determined by
the available bunch length at injection. We showed that
controlling this nonlinear dependence is crucial to avoiding
particle loss. Our bunching scheme provides the required
attosecond bunches with the matched energy spread and a
reasonable capture rate of 25%. In principle, fully adiabatic
bunching as in the RFQ is also possible. This would,
however, require a larger total length. The APF scheme can
also be scaled to higher energies, where smaller beam size
and larger physical apertures due to longer roll-off of the
evanescent acceleration fields will ease the requirements.
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discussions on APF. This work is funded by the Gordon
and Betty Moore Foundation (Grant No. GBMF4744) and
the German Federal Ministry of Education and Research
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