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Based on the resonant-state expansion with analytic mode normalization, we derive a general master
equation for the nonlinear pulse propagation in waveguide geometries that is valid for bound and leaky
modes. In the single-mode approximation, this equation transforms into the well-known nonlinear
Schrödinger equation with a closed expression for the Kerr nonlinearity parameter. The expression for the
Kerr nonlinearity parameter can be calculated on the minimal spatial domain that spans only across the
regions of spatial inhomogeneities. It agrees with previous vectorial formulations for bound modes, while
for leaky modes the Kerr nonlinearity parameter turns out to be a complex number with the imaginary part
providing either nonlinear loss or even gain for the overall attenuating pulses. This nonlinear gain results
in more intense pulse compression and stronger spectral broadening, which is demonstrated here on the
example of liquid-filled capillary-type fibers.
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Optical pulses can be significantly influenced by the
nonlinear response of a medium, including self-focusing,
self-phase modulation, four-wave mixing, and Raman
scattering [1], all mediated by the optical Kerr effect.
These effects are used in optical fibers for extreme spectral
broadening referred to as supercontinuum generation [1,2],
having a large number of applications [3–8]. Owing to
their tuning capabilities, many of these applications involve
capillaries or hollow-core fibers filled with gas or liquid
[5,6,8–11]. However, these waveguides are typically gov-
erned by leaky modes that lack—in contrast to their guided
counterparts—a rigorous theoretical description of non-
linear pulse propagation, which is mainly due to the
increasing field amplitude in the most outer cladding.
For instance, the nonlinear Schrödinger equation [1] is

characterized by the Kerr nonlinearity parameter γ, which
includes the effectivemode area and thematerial nonlinearity
[12] and is calculated by perturbative [1,13–15] or iterative
[16,17] approaches. While iterative methods purely rely on
numerical calculations, perturbative approaches require a
well-defined mode normalization. For bound modes [exam-
ple in Fig. 1(a)], the normalization can be defined as an
integral of the absolute squarevalue of the electric fields [1] or
the axial component of the time-averaged Poynting vector
[18,19] over the entire cross section of the fiber. In the case of
leaky modes [example in Fig. 1(b)], the corresponding fields
grow transverse to the direction of propagation with distance
to thewaveguide or fiber. Hence, typical expressions used for
themodal normalization diverge, resulting in an unphysically
vanishing Kerr nonlinearity parameter. Several approaches

have been suggested to bypass this issue, such as using a
restricted area of normalization defined by radiation caustic
[20] and applying a complex coordinate transformation to
regions outside the spatial inhomogeneities [19] for sup-
pressing the divergence (equivalent to perfectly matched
layers [21]). However, these approaches are prone to failure,
since they include certain parameters that need to be adapted
to a specific geometry. In contrast, analytic normalization
schemes, which are commonly used for three-dimensional
optical resonators [22–25], can be readily applied to any
geometry with a homogeneous surrounding. An analytic
expression for the mode normalization in waveguide geom-
etries can be found for slab waveguides in Ref. [26] and for
optical fibers in Ref. [27].

(a) (b)

FIG. 1. Spatial distribution of the z component of the real-valued
Poynting vector of fundamental fiber modes (λ0 ¼ 800 nm) for
two geometries (core radius rc ¼ 0.3 μm). (a) Guided mode in a
cylindrical step-index fiber with bismuth oxide (Bi2O3, n ¼ 2.05)
core and air cladding and (b) leaky mode in a Bi2O3 capillary filled
with carbon disulfide (CS2, n ¼ 1.6).
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Based on the correct mode normalization, it is possible to
set up the so-called resonant-state expansion [22–28],
which is a rigorous perturbative method that uses the
normalized resonant states of a reference system for
describing the optical properties of a perturbed system.
In this Letter, we use the resonant-state expansion with the

analytic mode normalization to derive amaster equation for the
nonlinear pulse propagation that allows for a rigorous descrip-
tion of both bound and leaky modes in waveguide geometries.
This equation is fully vectorial and includes possible Raman
scattering, intermodal cross talk, and backscattering. If the
latter three effects can be neglected, the master equation
reduces to the standard nonlinear Schrödinger equation with
a redefinedKerr nonlinearity parameter γ that can be calculated
straightforwardly with any linear Maxwell solver on a small
computational domain that includes all spatial inhomogene-
ities. For leaky modes, γ turns out to be a complex number,
confirming previous studies based on analytical calculations
[15] as well as iterative approaches [16,17]. We find that its
imaginary part can lead to nonlinear gain in addition to linear
loss, resulting in pulse compression and spectral broadening,
as demonstrated here for capillary fibers.
In waveguide geometries, the permittivity and the

permeability tensors ε and μ, respectively, possess a
translational symmetry along one spatial direction, which
we choose to be the z direction. Hence, we may use the
Fourier transformation

f̂ðrjj; βÞ ¼
1

2π

Z þ∞

−∞
fðrjj; zÞe−iβzdz; ð1Þ

where rjj denotes the spatial coordinates in the xy plane and
the hat implies Fourier space. Thus, the frequency-domain
representation of Maxwell’s equations [time dependence
expð−iωtÞ] can be written (in Gaussian units [29]) as [28]

M̂ðrjj; βÞF̂ðrjjÞ ¼ ĴðrjjÞ; ð2Þ
with the matrix and vector operators

M̂ðrjj;βÞ¼
 

εk0 −∇̂β×

−∇̂β× μk0

!
and ∇̂β≡

0
B@
∂x

∂y

iβ

1
CA ð3Þ

and the field and current vectors

F̂ðrjjÞ ¼
�

Ê

iĤ

�
and ĴðrjjÞ ¼

�
Ĵ

0

�
; ð4Þ

respectively, where k0 ¼ ω=c is the wave number and
Ĵ ¼ −4πiĵ=c − 4πk0P̂NL is the source of the fields.
Solutions of Eq. (2) with general source ĴðrjjÞ can be

obtained from the Green’s dyadic (GD) Ĝβðrjj; r0jjÞ with the

constitutive equation

M̂ðrjj; βÞĜβðrjj; r0jjÞ ¼ Îδðrjj − r0jjÞ; ð5Þ

where Î is the 6 × 6 identity matrix.
The GD can be decomposed in basis functions, namely,

the resonant states (RSs) [22]. The RSs are a discrete set
of solutions of the homogeneous Maxwell equations with
outgoing boundary conditions at wave numbers βm:

M̂ðrjj; βmÞF̂mðrjjÞ ¼ 0: ð6Þ

Note that due to reciprocity, for each eigenvector F̂m with
eigenvalue βm, there is another, “reciprocal conjugate”
eigensolution denoted by F̂R

m at −βm. The eigenvalues
βm correspond to poles of the GD. Thus, according to the
Mittag-Leffler theorem and the reciprocity principle, the
GD can be expanded as follows [27]:

Ĝβðrjj; r0jjÞ ¼ −
X
m

F̂mðrjjÞ ⊗ F̂R
mðr0jjÞ

2Nmðβ − βmÞ
þ Ĝcut

β : ð7Þ

Here, we have introduced the normalization constant Nm that
provides the correct weight to the RSs, since the eigenvectors
F̂m are defined by Eq. (6) only up to a constant factor. The term
Ĝcut
β denotes possible cut contributions due to the analytic

continuation on the complex β plane [23,26,27], which can be
replaced by cut poles in numerical calculations [23,26].
As shown in Ref. [27], the analytic expression for the

normalization constant of the RSs in fiber geometries is

Nm ¼ Sm þ Lm; ð8Þ

with the surface term

Sm ¼
Z

2π

0

Z
rn

0

ρðÊm;ρĤm;ϕ − Êm;ϕĤm;ρÞdρdϕ; ð9Þ

where rn is the normalization radius, and the line term

Lm ¼ εμk20þβ2m
2ðεμk20−β2mÞ2

Z
2π

0

�
Êm;z
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∂ϕ
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þ k0βmr2n
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0
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1

ρ
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þ ε
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Based on the GD in Eq. (7), the fields generated by a
source Ĵ can be calculated as

F̂ðrjj;β;ωÞ¼
Z

Ĝβðrjj;r0jj;ωÞĴðr0jj;β;ωÞdr0jj

¼−
X
m

F̂mðrjj;ωÞ
2Nmðβ−βmÞ

Z
F̂R
mðr0jj;ωÞ · Ĵðr0jj;β;ωÞdr0jj: ð11Þ

Next, we decompose the field on the left-hand side as

F̂ðrjj; β;ωÞ ¼
X
m

amðβ;ωÞ
1ffiffiffiffiffiffiffi
Nm

p F̂mðrjj;ωÞ; ð12Þ

with am as the modal amplitude. Substituting F̂ in Eq. (11)
by Eq. (12), evaluating the result for each F̂m independ-
ently, and carrying out the inverse Fourier transform of
Eq. (1), we obtain

ð∂z− iβmÞamðz;ωÞ¼
1

2i
ffiffiffiffiffiffiffi
Nm

p
Z

F̂R
mðrjj;ωÞ ·Jðrjj;z;ωÞdrjj:

ð13Þ

Finally, we consider J to be the nonlinear polarization,
which yields after the transformation from the frequency
to the time domain the general master equation for the
nonlinear pulse propagation:

∂zamðz; tÞ ¼ iβmðtÞ � amðz; tÞ

−
2π

c
∂t

Z
eRmðrjj; tÞ � PNLðr; tÞdrjj: ð14Þ

Here, � denotes convolutions in the time domain, and
eRmðrjj; tÞ≡ER

mðrjj; tÞ=
ffiffiffiffiffiffiffi
Nm

p
is the normalized electric field

in the time domain. This equation is fully vectorial and
contains no approximation so far. The only limitation of
Eq. (14) is that the expansion of the GD in terms of RSs is
not straightforward in the external regions outside the
spatial inhomogeneities [24,25]. Thus, the nonlinear polari-
zation should be restricted to the region of spatial inho-
mogeneities, i.e., excluding the homogeneous exterior.
Note that PNL contains implicitly the modal expansion
Eq. (12), so that Eq. (14) constitutes a rigorous description
of any nonlinear effect in terms of the RSs, including
both bound and leaky modes. In the following, we derive
exemplarily the nonlinear Schrödinger equation.
For most materials, the dominating nonlinear contribu-

tion in PNL is the third-order nonlinear susceptibility [1].
In general, this is a convolution in time of the χð3Þ tensor
with the electric field. Assuming an instantaneous non-
linear response, we obtain

PNLðr; tÞ ≈ χð3Þ..
.
Eðr; tÞEðr; tÞEðr; tÞ; ð15Þ

where ..
.
denotes tensorial multiplication. For the electric

fields in Eq. (15), we use the Fourier transform of
Eq. (12) from the frequency to the time domain.
Considering pulses that are centered around a frequency
ω0 with a finite spectral width and assuming that êm
depends only weakly on the frequency around ω0, the
fields can be written as

Eðr; tÞ ¼
X
m

amðz; tÞEmðrjjÞ þ c:c:≡ Eðr; tÞe−iω0t þ c:c:;

ð16Þ

where EmðrjjÞ≡ êmðrjj;ω0Þ and Eðr; tÞ is the envelope for
the dominant plane wave with frequency ω0. Thus, we
obtain dominant contributions of PNL in Eq. (15) oscillating
with ω0 and 3ω0. For isotropic materials and by taking into
account the permutation symmetry of the χð3Þ tensor, the
resulting nonlinear polarization yields [14]

PNL ≈
χð3Þi

4
½2ðE · E�ÞE þ ðE · EÞE��e−iω0t; ð17Þ

where χð3Þi ≡ χð3Þxxxx. Thus, the propagation equation
becomes

∂zam ≈ iβm � am þ
X
n;p;q

i
2π

c
∂tαm;n;p;qana�paq; ð18Þ

with

αm;n;p;q ¼
Z

χð3Þi

4
½2ðER

m · EqÞðEn · E�
pÞ

þ ðER
m · E�

pÞðEn · EqÞ�drjj: ð19Þ

In the single-mode approximation, Eq. (18) transforms into
the standard nonlinear Schrödinger equation. First, we
separate βm into real and imaginary parts β̄m and ᾱm,
respectively. Expanding them into Taylor series around ω0

yields

β̄m ≈ β̄ð0Þm þ β̄ð1Þm ðω − ω0Þ þ
β̄ð2Þm

2
ðω − ω0Þ2; ð20Þ

where β̄ðnÞm ¼ ∂nβ̄m=∂ωnjω0
, and ᾱmðωÞ ≈ ᾱmðω0Þ≡ ᾱð0Þm

when assuming a constant modal loss. By introducing

amðz; tÞ≡ Amðz; tÞe−iω0tþiβ̄ð0Þm z; ð21Þ
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we obtain the well-known nonlinear Schrödinger equation

∂zAm ≈ iγ

�
1 −

1

iω0

∂τ

�
jAmj2Am − i

β̄ð2Þm

2
∂2
τAm − ᾱð0Þm Am;

ð22Þ
with γ ¼ 2πk0αm;m;m;m as the Kerr nonlinearity parameter

and τ ¼ t − β̄ð1Þm z as the retarded time. It has to be empha-
sized that Eq. (22) is obtained in a rigorous way without any
slowly varying approximation. Moreover, it can be readily
applied to both bound and leaky modes due to the analytic
mode normalization. For leaky modes, the correctly normal-
ized fields and, thus, γ are complex quantities, in agreement
with previous findings [15–17]. Particularly, our γ equals that
of Ref. [15] when replacing their normalization by the
analytic expression, which ensures a straightforward imple-
mentation in numerical calculations [27].
Let us now compare our approach for the calculation of

γ with other perturbative formulations for bound modes.
Since bound modes exhibit a real propagation constant,
reciprocal conjugation can be replaced by the usual com-
plex conjugation, i.e., ER

m ¼ E�
m. Hence, one can show

that our γ has exactly the same form as in the vectorial
approach described in Refs. [12,14,15], whereas the scalar
approaches of Refs. [1,13] are approximatively valid for
vanishing longitudinal electromagnetic field components.
Figure 2(a) displays γ as a function of core radius rc for the
step-index fiber considered in Ref. [14] with Bi2O3 core

ðχð3ÞBi2O3
¼ 3.4 × 10−13cm2statV−2Þ surrounded by air. The

results have been obtained by the weakly guiding approxi-
mation [1] (Agrawal, red line), its slightly improved version
suggested in Ref. [13] (Foster, black dashed line), the fully
vectorial approach [14] (Afshar, blue crosses), and our
approach based on the resonant-state expansion (RSE,
green square dots). It can be seen that our approach provides
exactly the same results as the fully vectorial one. In contrast,
both scalar approaches (Agrawal and Foster) deviate sig-
nificantly for small core radii, which can be explained by the
large longitudinal field components [14]. The advantage of
our approach compared to the fully vectorial one is that, in

numerical calculations, we can restrict the area of normali-
zation to the regions of spatial inhomogeneities, which is in
the present case the fiber core. This can be seen in Fig. 2(b),
where γ is displayed as a function of the radius of normali-
zation rn for a fixed core radius of rc ¼ 1.5 μm. While
previous approaches [1,13,14] require some finite radius rn
of roughly 3rc in order to exhibit a deviation of less than 5%
to their exact value of normalization for rn → ∞, our
approach is independent of the radius of normalization for
all rn ≥ rc, as expected from Eq. (8). This fact makes
numerical calculationsmore efficient, especially for complex
fiber geometries such as photonic crystal fibers [30] and
situations with extended evanescent fields.
As a rather simple example for leaky modes, we consider

a Bi2O3 capillary fiber that has similar dimensions as the
experimentally fabricated Bi2O3 fibers in Refs. [31,32].
In our case, the capillary is filled with CS2 [6,33], which
we assume here to be the only nonlinear material, since

χð3ÞCS2
¼ 1.8 × 10−12cm2statV−2 ≫ χð3ÞBi2O3

. Figures 3(a)
and 3(c) show real and imaginary parts of γ as functions
of the core radius rc. For the scalar and the fully vectorial
approaches, we have used rn ¼ rc as an optimum radius
of normalization for each core radius, which corresponds
to the minimum deviation to our approach [Fig. 3(b)].
In the strong guidance or subwavelength regime (2rc < λ0),
these approaches begin to deviate from our value for the
real part of γ [Fig. 3(a)]. For large core radii (2rc ≫ λ0),
the deviation between the different approaches becomes
smaller.
In contrast to bound modes, γ has a nonvanishing

imaginary part for leaky modes [Fig. 3(c)]. While this is
expected from previous works [15–17], we find that,
depending on the fiber parameters, ImðγÞ can change its

(a) (b)

FIG. 2. Comparison of different approaches for calculating the
Kerr nonlinearity parameter γ of the fundamental bound mode of
a Bi2O3 fiber located in air (λ0 ¼ 800 nm): (a) γ as a function of
core radius rc for a radius of normalization rn ¼ 5rc and
(b) dependence of γ on rn for rc ¼ 0.15 μm [arrow in (a)].

(a)

(c)

(b)

(d)

FIG. 3. Comparison of different approaches for calculating γ of
the fundamental leaky mode of a Bi2O3 capillary filled with CS2
(λ0 ¼ 800 nm). The top and bottom panels depict the real and
imaginary parts, respectively, of γ as functions of core radius rc
[(a) and (c) with rn ¼ rc] and radius of normalization rn [(b) and
(d) with rc ¼ 1.5 μm; see the arrow in (c)], respectively.
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sign, with ImðγÞ > 0 as nonlinear loss and ImðγÞ < 0 as
nonlinear gain, which is not a contradiction to previous
works [29]. The mechanism of the nonlinear gain can be
explained by a self-focusing that reduces the pulse intensity
at the core-cladding interface, which in turn decreases the
energy dissipation through the cladding.
Let us now consider γ as a function of the normalization

radius rn [Figs. 3(b) and 3(d)] for a fixed core radius of
rc ¼ 1.5 μm. While our approach yields the same γ for all
radii of normalization, the other approaches result in γ → 0
for rn → ∞. The minimum deviation of the real part of γ
(red solid line) and its absolute value (blue dashed line)
between the approach by Afshar and our approach is
displayed in Fig. 4 as a function of core radius rc.
Evidently, the imaginary part of γ is the main reason for
the significant deviation for larger core radii.
Next, we study the influence of the imaginary part of γ

on the pulse propagation. For our numerical simulations,
we consider the Bi2O3 capillary fiber with a radius of
rc ¼ 10 μm filled with CS2 (results for other core radii are
given in Ref. [29]). The numerical solution of Eq. (22)
is calculated by the split-step Fourier method [1,4,34].
Figures 5(c) and 5(d) display the spectral and temporal
evolution, respectively, of the initial pulse with γAfshar ¼
141.5 km−1W−1 obtained from the fully vectorial approach.
The results in Figs. 5(a) and 5(b) have been obtained for
γRSE ¼ ð141.7 − 1.9iÞ km−1 W−1 based on our approach.
In the latter case [Fig. 5(a)], we can clearly see an increasing
spectral broadening compared to the fully vectorial approach
[Fig. 5(c)] that is accompanied by a narrowing in the
corresponding temporal evolutions [Figs. 5(b) and 5(d)].
We conclude that the negative imaginary part of the Kerr
nonlinearity parameter leads to pulse compression, which in
turn gives rise to spectral broadening.
In conclusion, we present here a new and general

approach for simulating nonlinear pulse propagation in
waveguides and optical fibers based on the resonant-state
expansion with analytic mode normalization. This rigorous
approach does not require any slowly varying amplitude
approximation and can be readily applied to both bound
and leaky modes, with the analytic form of the normali-
zation allowing for a restriction of the computational

domain to regions of spatial inhomogeneities. Most impor-
tantly, we find that, in the case of leaky modes, the Kerr
nonlinearity parameter has an imaginary part that provides
either nonlinear loss or nonlinear gain for overall attenuat-
ing pulses that can significantly influence the spectral
and temporal evolution of an ultrashort pulse. While our
example of a capillary fiber is rather simple, leaky modes
play a crucial role in a large number of fiber geometries
[5,8–11]. For all these geometries, our theory opens new
routes for tailoring the nonlinear pulse propagation in
optical fibers with application in fields such as super-
continuum generation and pulse compression.
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