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Lorentz reciprocity establishes a stringent relation between electromagnetic fields and their sources. For
static magnetic fields, a relation between magnetic sources and fields can be drawn in analogy to the
Green’s reciprocity principle for electrostatics. So far, the magnetostatic reciprocity principle remains
unchallenged and the magnetostatic interaction is assumed to be symmetric (reciprocal). Here, we
theoretically and experimentally show that a linear and isotropic electrically conductive material moving
with constant velocity is able to circumvent the magnetostatic reciprocity principle and realize a diode for
magnetic fields. This result is demonstrated by measuring an extremely asymmetric magnetic coupling
between two coils that are located near a moving conductor. The possibility to generate controlled
unidirectional magnetic couplings implies that the mutual inductances between magnetic elements or
circuits can be made extremely asymmetric. We anticipate that this result will provide novel possibilities for
applications and technologies based on magnetically coupled elements and might open fundamentally new
avenues in artificial magnetic spin systems.
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Lorentz reciprocity is a general principle that relates
electromagnetic (EM) fields with their sources. Arising
directly from Maxwell equations, it has a fundamental
importance in a huge variety of EM systems and technol-
ogies, ranging from radio-wave and microwave antennas to
photonic communication systems, to name only a few.
Finding ways to break the Lorentz reciprocity principle has
raised a lot of interest lately [1,2], since it is a necessary
condition to build true EM isolators that allow the propa-
gation of signals in one direction while preventing back-
action in the opposite one [3]. Recently, it has been shown
that breaking Lorentz reciprocity also allows us to over-
come fundamental time-bandwidth limitations in resonant
systems [4]. The concept of reciprocity extends to other
physical systems, like acoustic wave propagation or
mechanical systems [5–7]. Also there, one aims at breaking
reciprocity to achieve one-way signal propagation. In the
context of microwaves and photonic systems, the magneto-
optical effect (Faraday rotation) has been traditionally used
to break reciprocity. However, such an effect relies on the
application of an external magnetic bias, which makes it
unsuitable for on-chip miniaturization and integration. This
has prompted the development of a whole new generation
of magnetic-free nonreciprocal devices mainly based on
the application of other bias vectors which are odd under
time reversal. This includes the spatiotemporal modulation
of material properties to impart angular momentum bias
[8–11], linear momentum [12], or commutation [13]. It has
been realized that optomechanical coupling can also be

used to induce electromagnetic nonreciprocity [14], see
[15] and references therein.
In the static limit, Maxwell equations decouple and

reciprocity needs to be revised. In electrostatics, Green’s
reciprocity [16,17] relates two independent charge distri-
butions, ρ1 and ρ2, with their corresponding electrostatic
potentials, V1 and V2, via

R
drρ1V2 ¼

R
drρ2V1. For the

magnetostatic case, one can do an analogous derivation.
Consider two independent distributions of current den-
sities, J1 and J2, that create the magnetic fieldsH1 andH2,
respectively. The corresponding magnetic vector potentials,
A1 and A2, are related to the fields through the magnetic
permeability tensor, ¯̄μ, as ¯̄μHi ¼ ∇ ×Ai (i ¼ 1, 2). Using
the two sets of magnetostatic Maxwell equations and
manipulating them, one finds ∇ · ðH1 ×A2 −H2 ×A1Þ ¼
H2

¯̄μH1 −H1
¯̄μH2 þA2 · J1 −A1 · J2 (see Supplemental

Material [18]). The first two terms cancel out if (i) per-
meability is a symmetric tensor, ¯̄μ ¼ ¯̄μT, and (ii) ¯̄μ is linear
(i.e., does not depend on the magnetic field). By integrating
over all space, the left-hand side vanishes. This leads to the
reciprocity condition for magnetostatic fields, [25]

Z
drA2 · J1 ¼

Z
drA1 · J2: ð1Þ

This expression reads similar to the Lorentz reciprocity
equation for electromagnetic waves and localized sources,R
drE2 · J1 ¼

R
drE1 · J2 [1,4], with E being the electric

field. As shown in the Supplemental Material [18], though,
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the derivation of the Lorentz reciprocity condition assumes
coupled electric and magnetic fields and, thus, one cannot
make the zero-frequency limit directly. At the same time,
static conditions (no temporal variation of fields, sources or
material properties) impose severe constrains when one
aims at circumventing magnetostatic reciprocity; there
is no magneto-optical coupling and temporal modulation
of the material properties is not compatible with static
conditions [26].
The magnetostatic reciprocity condition in Eq. (1) can be

rewritten in different ways.When sources are point magnetic
dipoles with moments m1 and m2, located at positions r1
and r2, respectively, it simplifies to B2ðr1Þ ·m1 ¼
B1ðr2Þ ·m2, whereBi is themagnetic induction field created
by the ith dipole. Alternatively, when sources are closed
magnetic circuits, Eq. (1) becomes M12 ¼ M21, with Mnm
being the mutual inductance between the nth and the mth
circuits. This shows how themagnetic reciprocity principle is
responsible for the symmetry of magnetic couplings [27,28].
The magnetostatic reciprocity principle formulated in

Eq. (1) holds for linear materials with locally symmetric
permeability tensors [ ¯̄μðrÞ ¼ ¯̄μðrÞT]. This includes mag-
netic metamaterials [29–36] which, despite of being com-
plex arrangements of different magnetic materials with
unusual effective magnetic properties, are locally symmet-
ric. Hence, magnetic metamaterials cannot break the
magnetic reciprocity principle even in extremely counter-
intuitive cases, see [18].
Let us now show how, in spite of using linear, isotropic,

and homogeneous materials one can optimally circumvent
the magnetic reciprocity principle by means of a moving
electrical conductor. When a conductor with electrical
conductivity σ moves with velocity v ≪ c (c is the speed
of light) in the presence of a magnetic field, a current density
given by Jmc ¼ σv ×B is induced [37]. If one includes this
term in the previous reciprocity derivation, an extra factor
appears reading σv · ½ð∇ ×A1Þ ×A2 − ð∇ ×A2Þ ×A1�.
This factor, generally different from zero, shows how a
moving conductor can break reciprocity.
As a particular case, we consider a semi-infinite conductor

that extends to z < 0. We assume it has a constant electrical
conductivity σ and a velocity v ¼ vêx. We evaluate the
magnetic reciprocity between two identical dipoles, m1 ¼
m2 ¼ mêj (with êj being a unit vector, j ¼ x, y, z) situated at
r1 ¼ ð−δ=2; 0; z0Þ and r2 ¼ ðδ=2; 0; z0Þ, respectively, see
Fig. 1 left (δ, z0 > 0). Since the conductor is translationally
invariant along x, this problem is equivalent to considering a
single magnetic point dipole with momentm ¼ mêj located
at r ¼ ð0; 0; z0Þ and evaluating the magnetic field at the
positions rþ ¼ ðδ; 0; z0Þ and r− ¼ ð−δ; 0; z0Þ, see Fig. 1
right. Reciprocity dictates that the isolation, defined as
I j ≡ Bjðr−Þ=BjðrþÞ, is I j ¼ 1.
We analytically solve the Lorentz-transformed problem

of a dipole moving with constant velocity at a fixed height
z0 above a semi-infinite surface characterized by a complex

permittivity εðωÞ ¼ 1þ iσ=ðε0ωÞ [18]. The scattered field
is obtained everywhere in the upper half-space. In general,
this field does not show any clear symmetry and strongly
depends on the magnetic Reynolds number, Rm ≡ μ0σvz0
(with μ0 being the vacuum permeability). For small
Reynolds numbers (Rm ≪ 1), the scattered field can be
approximated to an antisymmetric function of δ. In this
case the effect of the conductor is clear; since the field of
the bare dipole is symmetric, the moving conductor
increases the field on one side but decreases it on the
other. The inverse of the isolation between dipoles,
arranged in the three different configurations, is plotted
in Fig. 2; the curves only depend on δ=z0 and Rm. These
plots show how the moving conductor generates isolations
different from 1 and, thus, breaks magnetic reciprocity for
the three different dipole orientations. However, while
isolations between x-oriented dipoles are small (values
near one), y and z orientations result in isolations that go
from positive to negative values through a divergence. The
existence of δ’s for which the isolation is infinite (we refer
to the points where I−1

j ¼ 0 as δj0 for j ¼ y, z) demon-
strates that one can achieve a maximally asymmetric
(unidirectional) magnetic coupling between the dipoles.
For example, for two dipoles oriented along z and located at
r1 ¼ ð−δz0=2; 0; z0Þ and r2 ¼ ðδz0=2; 0; z0Þ, one finds that
Bz;1ðr2Þ ¼ 0 while Bz;2ðr1Þ ≠ 0. If dipoles are interpreted
as small circular coils with axis along the z direction, then
this means that the magnetic flux threading coil 1 is
different from zero while the flux through coil 2 is zero.
Therefore, the mutual inductance between the two mag-
netic elements becomes maximally asymmetric, with
M12 ¼ 0 and M21 ≠ 0. In this sense, a unidirectional
magnetic coupling is achieved, realizing a perfect diode
for magnetic fields.

z
xy

(a)

(b)

(c)

-

FIG. 1. (Left) Sketch of the magnetic dipoles between which
magnetic reciprocity is evaluated (m1 in blue andm2 in red). For
translationally symmetric systems, this is equivalent to consid-
ering a single dipole (right) and evaluating the component of the
field parallel to the dipole at rþ and r−.
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Note that this mechanism is intrinsically lossy; one needs
to add energy to the system in order to keep the conductor
moving at a constant velocity and overcome the magnetic
friction originating from the induced eddy currents. The
power dissipated by the system of Fig. 1 right is given by
P ¼ −vFx, where Fx is the x component of the force acting
on the dipole as a result of these currents. The force can be
analytically calculated from the field scattered by the
conductor [18]. As shown in the inset of Fig. 2(c), the
normalized force only depends on Rm and has a non-
monotonic behavior; it is 0 for Rm ¼ 0 (when the conductor
is at rest), grows linearly for small Rm, reaches a maximum
value for Rm ≈ 10, and decreases as R−1=2 for Rm ≫ 10.
This force has a similar velocity dependence as the vacuum
frictional force between two conducting surfaces [38],
which is maximal for a certain velocity and monotonically
decreases for bigger values. Interestingly, it can be dem-
onstrated that for a perfect electric conductor (ε → ∞),
reciprocity is preserved and I ¼ 1 for all δ. In this ideal
case the system is lossless and the dipole experiences no
force. For consistency, we also checked that the Lorentz-
transformed problem with the dipole at rest and the
conductor moving with constant velocity leads to the same
results. We solved this problem numerically with COMSOL

MULTIPHYSICS by introducing a free current density Jmc in
the conductor, finding good agreement with our analytical
results.

Finally, we remark that these results are also valid for
low-frequency oscillating magnetic fields. We analytically
solve the problem of a z-oriented magnetic dipole, whose
moment oscillates asmðtÞ¼mcosðω0tÞêz. For ω0≪ jv=z0j,
one finds that the magnetic field distribution is the same as
for the static case, simply modulated by a cosðω0tÞ function
[18]. Therefore, even for low-frequency oscillating mag-
netic sources and circuits, the moving conductor is able
to generate a maximally asymmetric magnetic coupling
between them.
We shall now present the experimental demonstration of

these results. Our setup consists of a circularly symmetric
conductor with a U-shaped cross section, as sketched in
Fig. 3(a), that moves with constant angular velocity around
its axial symmetry axis. The previous analysis indicates that
the magnetic moment of the dipole has to be perpendicular
to the velocity in order to generate points of infinite
isolation. For this reason, we put a small coil inside the
moving conductor space, with its axis pointing along the
radial direction. A second coil is placed at a given distance
with analogous radial orientation, and the magnetic cou-
pling between them is measured [18]. For experimental
convenience, the experiment is performed with low-fre-
quency oscillating magnetic fields. We use a signal gen-
erator to feed the first coil, while the voltage induced in the
second (pickup) coil is measured through a lock-in ampli-
fier. Lock-in measurements provide a good signal-to-noise
ratio even for small magnetic fields and allow us to get rid
of slowly fluctuating magnetic fields in the environment. At
the low frequencies we consider, the coupling between
magnetic and induced electric field is negligible and, thus,
these measurements effectively describe the static case.
Measurements of the out-of-phase voltage for a signal
frequency of ω0=ð2πÞ ¼ 9 Hz are shown in Fig. 3(c), as a
function of the rotation frequency of the conductor, ν.
Measurements are repeated for three different positions of
the pickup coil (see inset). For positive rotation frequencies,
the measured voltage decreases and crosses 0 for positions
r2 and r3 of the pickup coil. At position r1, the field
scattered by the conductor is not able to fully cancel the
field of the source for the velocities we considered. When
moving in the opposite direction, the conductor increases
the measured voltage. These measurements convincingly
demonstrate that magnetic reciprocity is broken and that
points of infinite isolation (for which the measured voltage
is zero for positive rotation frequency but different from
zero for negative) are generated by means of a moving
conductor. These zero-voltage points are found in spite of
the extended size of the pickup coil; the field goes from
positive to negative values around the zero and thus, the
total magnetic flux threading the coil cancels out at some
point. As can be seen, the error bars associated with our
measurements are very small compared to the measured
voltages. These errors come from the measured voltage
fluctuations over time (plotted error bars correspond to 1σ).

R =1m
R =10m
R =25m
R =50m

-1
-1

-1

F /Fx 0

Rm0 50 100

0

0.2

0.4

/z0

(a)

(b)

(c)

FIG. 2. Plots of the inverse of the isolation as a function of δ=z0
for dipoles oriented along (a) x, (b) y, and (c) z directions for
different values of Rm. Inset in (c) shows the normalized force
Fx=F0 [F0 ≡ μ0m2=ð8π2z40Þ] on a z oriented dipole as a function
of Rm. Notice that, since the materials involved are linear, these
plots (and therefore, the points of infinite isolation) do not depend
on the modulus of the magnetic dipole.
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All these measurements agree very well with the
corresponding 3D numerical calculations [solid lines in
Fig. 3(c)] considering the coils as point dipoles. The main
source of uncertainty between our measurements and the
numerical calculations comes from the positioning of the
coils relative to each other and to the moving conductor. We
tried to estimate the effects of imprecise positioning by
running different numerical calculations in which we
changed the distance between the coils (�0.5 mm) and
their relative position with respect to the conductor
(�0.5 mm in the z direction). The results were used to
create the shadow bands in Fig. 3(c), defined as the result
with the largest deviation for each ν from the nominal
calculation. Numerical calculations also provide a deeper
understanding on how the conductor shapes the distribution
of magnetic field. In Fig. 3(b), we show numerical
calculations of the real part of the Bρ field (being Bρ the
radial component of the field in cylindrical coordinates,
ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
) created by a magnetic dipole (in white)

oscillating at a frequency ω0=ð2πÞ ¼ 9 Hz. The symmetric
field distribution when the conductor is at rest (second
panel) becomes clearly asymmetric as it moves in one
direction (first panel). When moving in the opposite
direction (third and fourth panels), the field distribution
flips direction. This evidences the existence of points of
infinite isolation (points of zero field, in green color).
Measurements were repeated for higher signal frequen-

cies [18]. In all cases the agreement with the corresponding
numerical calculations is excellent. Finally, we measure the
actual mutual inductance between the two coils to dem-
onstrate how extremely asymmetric values are achieved.
The second coil is placed at r2 and is connected to the
lock-in amplifier, while the first coil is connected to the
signal generator. With the conductor at rest (ν ¼ 0), we
measure M12 ¼ ð22þ 3iÞ nH. We then exchange the con-
nections to the coils and measure the opposite coupling,
finding a symmetric mutual inductance, M21 ¼ M12, in
agreement with the magnetic reciprocity principle. This
same procedure is repeated with the conductor moving
at ν ¼ 33.3 Hz. In this case, we first measure M0

12 ¼
ð0þ 2iÞ nH and, after exchanging the connections, we
findM0

21 ¼ ð36þ 0iÞ nH [39] (both measurements have an
error of �0.6 nH [18]). These measurements demonstrate
how, by tuning the velocity of the conductor, the magnetic
coupling between the coils becomes unidirectional.
The use of a moving conductive material to break

magnetic reciprocity boils down to the Lorentz force that
the free electrons of the conductor experience as they move
through the magnetic field. In principle, one could replace
the mechanical movement of the whole material by an
externally applied electric field, which would force the
electrons to move with a constant mean velocity in the
conductor according to Ohm’s law. While theoretically
correct, this approach is limited by the small mean velocity
at which electrons move in metals for reasonable current

(a)

(b)

(c)

FIG. 3. (a) Sketch of the experimental setup; a circular U-
shaped conductor (orange, with Re ¼ 65 mm) moves with
rotation frequency ν around the z axis (arrows indicate the
positive rotation direction). Two coils (in red), whose axes are
radially aligned, are used to measure the magnetic coupling
between them. (b) Numerical calculations for an oscillating
magnetic dipole [in white, for ω0=ð2πÞ ¼ 9 Hz]. Colors corre-
spond to the real part of the normalized radial field, Bρ=B0 [where
B0 ≡ μ0m=ð2πz30Þ with z0 ¼ 5 mm] for different rotation
frequencies of the conductor, ν ¼ −30, 0, 11.7, and 36.7 Hz
(from left to right). Plots show the magnetic field distribution
evaluated at the plane of the dipole. White dots indicate positions
where measurements were taken. (c) Out-of-phase component of
the voltage measured in the receiving coil (symbols) as a function
of the velocity of the conductor [for a signal frequency of
ω0=ð2πÞ ¼ 9 Hz]. Measurements were taken at three different
distances from the source coil, r1 ¼ 11.4 mm (pink), r2 ¼
13.1 mm (yellow), and r3 ¼ 15.5 mm (purple), see inset. For
each distance, measurements are normalized to the voltage
induced at the receiving coil in free space, jV0j. Solid lines
are the corresponding numerical calculations considering point
dipoles. Shadow areas are defined by considering uncertainties in
the experimental parameters used for the numerical calculations
[18]. Dashed vertical lines indicate the frequencies of the
numerical calculations in (b). Error bars (1σ) are shown for
the three cases; most of them are symbol size or smaller.
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densities. For copper, e.g., the standard maximum current
density of 500 A=cm2 corresponds to mean velocities
∼4 × 10−4 m=s, in contrast to the linear velocities achieved
in our setup of ∼3.1 m=s for ν ¼ 10 Hz (see [18] for a
detailed discussion using the Drude model). Interestingly,
other materials like graphene exhibit carrier mobilities that
can be more than 3 orders of magnitude larger than in
copper [40] while being able to sustain current densities on
the order of ∼108 A=cm2 [41]. Hence, graphene is an
interesting candidate to explore implementations that do
not rely on mechanical movement of macroscopic objects.
In conclusion, we have demonstrated that the magneto-

static reciprocity principle can be circumvented by means
of a linear and isotropic electrical conductor moving with
constant velocity. The nonreciprocal response of the system
is controlled trough the velocity of the conductor, making it
possible to achieve an infinite magnetic isolation (i.e., a
perfectly unidirectional magnetic coupling) and to realize a
diode for magnetic fields. The concept, which relies only
on linear materials and low (nonrelativistic) velocities, may
open the door to novel possibilities for a large number of
systems and technologies that employ magnetically
coupled elements. In particular, the breaking of magneto-
static reciprocity could be useful to increase the efficiency
of magnetically based wireless power transfer technologies.
This would allow the energy to flow from the emitting to
the receiving circuit but would prevent the flow in the
opposite direction. Other key technologies based on mag-
netically coupled circuits, like transformers, could also
benefit from this same principle. Results presented here
could also open new horizons in fundamental research
areas, like artificial magnetic spin systems. A conductor
moving near a system of artificial spins would alter the
reciprocal dipole-dipole interaction between them, poten-
tially forcing the system to crystallize in nonconventional
structures.
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