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The Becchi-Rouet-Stora-Tyutin (BRST) transformations and equations of motion of a gravity–two-
form–dilaton system are derived from the product of two Yang-Mills theories in a BRST covariant form, to
linear approximation. The inclusion of ghost fields facilitates the separation of the graviton and dilaton. The
gravitational gauge fixing term is uniquely determined by those of the Yang-Mills factors which can be
freely chosen. Moreover, the resulting gravity–two-form–dilaton Lagrangian is anti-BRST invariant and
the BRST and anti-BRST charges anticommute as a direct consequence of the formalism.
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Introduction.—Is it possible that gravity can be reformu-
lated as the “product” of two gauge theories? Despite the
obvious and significant differences of gauge and gravity
theories, such a picture has indeed emerged over recent years,
particularly in the context of the Bern-Carrasco-Johansson
construction of gravity scattering amplitudes as the “double
copy” of Yang-Mills amplitudes [1–3]. This framework is
conceptually suggestive and powerful, as exemplified by the
remarkable five-loop result in N ¼ 8 supergravity [4].
However, we need not restrict ourselves to amplitudes; there
are now complementary formulations of the “gravity ¼
gauge × gauge” paradigm at the level of classical solutions
and the spacetime fields themselves [5–23], as well as
strongly coupled theories with no Lagrangian description
[24]. Such approaches provide a different way of posing the
question in what precise sense gravity is the square of gauge.
The product of two pure Yang-Mills gauge theories

typically yields gravity coupled to a dilaton and a Kalb-
Ramond two-form [25]. Consequently, a thorny issue is the
separation of the graviton and dilaton [26]. In the present
contribution, we reconsider the gravity–two-form–
dilaton system using the field-theoretic realization of
gravity ¼ gauge × gauge introduced in Refs. [8,27]. The
field-theoretic product of two gauge potentials, Aμ and Ãν,
is given by

½Aμ ∘ Ãν�ðxÞ ≔ ½Aa
μ ·Φaã · Ã

ã
ν �ðxÞ: ð1Þ

Here, · denotes a convolution and Φaã a spectator scalar
field valued in the bi-adjoint of the left and right gauge
groups, G and G̃, of Aμ and Ãν, respectively. The spectator
field is closely related, as a convolutive inverse [26],
to the ϕ3 theory appearing in the context of scattering
amplitudes [15,28–30] and classical solutions [5,9,
11–14,16,20,31,32]. Its role here is to allow for arbitrary
and independent G and G̃. Using Eq. (1) it was shown that
the local symmetries of the gravity theory (general coor-
dinate, local supersymmetry, and p-form gauge transfor-
mations) follow from those of the Yang-Mills factors [27],
to linear approximation. Our present aim is to provide an
explicit map between the equations of motion and gauge-
fixing choices of the gauge theory factors and those of the
corresponding gravity theory. Regarding the latter, we seek
a formulation of the gravity ¼ gauge × gauge dictionary
which is general enough to derive equations of motion of
gravity from Yang-Mills theory without having to restrict to
a specific gauge, while disentangling the graviton, dilaton,
and two-form fields. As we shall demonstrate, these
ambitions may be realized by adopting a Becchi-Rouet-
Stora-Tyutin (BRST) [33–39] formalism and paying due
diligence to boundary conditions.
When considering general classes of gauge-fixing

choices, one is quite naturally led to consider a BRST
approach, even when discussing purely classical aspects of
the field theories. Indeed, the inclusion of ghosts in the
context of Yang-Mills theory squared was long-ago intro-
duced by Siegel [40,41]. Here, we shall construct the
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physical and ghost fields of the graviton–two-form–dilaton
system as the product of Yang-Mills fields using Eq. (1).
Then, by exploiting the properties of the product (1), we
are able to derive the BRST variation and equations of
motion of the gravity theory from those of the Yang-Mills
factors alone.
This approach requires two further ingredients. The first

concerns the domain of validity of the “derivative rule” of
the convolution, which is not Leibniz, but rather satisfies

∂μðf · gÞ ¼ ð∂μfÞ · g ¼ f · ð∂μgÞ: ð2Þ

This property is key to recovering both the BRST variations
and equations of motion. However, Eq. (2) only holds for
sufficiently well-behaved functions. Following the treat-
ment given in Ref. [26], one can suitably restrict to a well-
defined domain (by, e.g., introducing punctures) and
encode the associated boundary conditions through the
introduction of effective sources, generically denoted here
by j. Second, the convolution dictionary realized through
Eq. (1) requires the inclusion of the nonlocal Green’s
operator G · j≡□

−1j [26], which commutes with the
d’Alembertian,

□
−1
□ ¼ □□

−1 ¼ Id; ð3Þ

when acting on fields not in the kernel of □. These
ingredients combine with the inclusion of ghosts to single
out a unique gravity ¼ gauge × gauge field map, as we
shall demonstrate in the following.
The gauge theories.—Consider two copies of linearized

Yang-Mills theory with the BRST Lagrangian

L ¼ tr

�
−
1

4
FμνFμν − bGðA; bÞ − c̄

Z
d4y

δG
δAμ ∂μc

�
; ð4Þ

where Fa
μν ¼ 2∂ ½μAa

ν� [42] and c, b, and G are the ghost,
Lautrup-Nakanishi Lagrange multiplier and gauge-fixing
function, respectively. The gauge group indices will be
suppressed in the following. While not necessary, we work
within the one-parameter ξ family of general linear covar-
iant gauges, the most general class maintaining manifest
Lorentz covariance. Then, after elimination of the Lautrup-
Nakanishi auxiliary field b, we have,

LA ¼ tr

�
−
1

4
FμνFμν þ

1

2ξ
ð∂μAμÞ2 − c̄□c

�
: ð5Þ

As usual with BRST, the choice of gauge fixing (here a
Gaussian average over Lorenz gauge) is implemented via
the insertion of a delta functional in the path integral,
compensated by a Jacobian factor (lifted to the action via the
ghosts c), ensuring that physical observables are unaffected
by the gauge choice (i.e., the ξ dependence drops out).
Variation of the above leads to the equations of motion,

□Aμ −
ξþ 1

ξ
∂μ∂A ¼ jμðAÞ; □cα ¼ jαðcÞ; ð6Þ

where, for simplicity, we have added the sources directly
into the equations [43] and introduced the OSp(2) ghost-
antighost doublet cα, where c1 ¼ c, c2 ¼ c̄ [44]. As
indicated previously, the sources ensure that the convolu-
tion is well defined and obeys Eq. (2) by effectively
encoding boundary conditions. The theory is invariant
under the BRST transformations

QAμ ¼ ∂μc; Qc ¼ 0; Qc̄ ¼ 1

ξ
∂μAμ: ð7Þ

Thus, squaring two pure Yang-Mills theories now involves
all possible products between the sets of fields ðAμ; cαÞ, Φ
and ðÃν; c̃βÞ. As first noted in Refs. [40,41], the degrees of
freedom, ghost number, and parity inherited by the prod-
ucts are very suggestive that squaring two BRST-covariant
Yang-Mills theories results in the states, physical as well as
first- and second-level ghosts, of a graviton, two-form, and
dilaton. As an interesting example, the ghost-antighost
triplet in the 2 ⊗ 2 of OSp(2), given by cðα ∘ c̃βÞ, corre-
sponds to the three second-level ghosts of the two-form
theory, while the singlet, cα ∘ c̃α, yields an auxiliary degree
of freedom, which, as we shall see, contributes to both the
graviton (15) and the dilaton (17).
The gravity theory.—First, we give the BRST

Lagrangians for the graviton hμν and dilaton φ (defined
around Minkowski) and the two-form, Bμν. The former, in
Einstein frame, reads

Lh;φ ¼ −
1

4
hμνEμν þ

1

2ξðhÞ

�
∂νhμν −

1

2
∂μh

�
2

−
1

4
ð∂φÞ2 − c̄μ□cμ; ð8Þ

where Eμν is the linearized Einstein tensor and we average
over de Donder gauge fixings, controlled by ξðhÞ. For the
latter,

LB ¼ −
1

24
HμνρHμνρ

þ 1

2ξðBÞ
ð∂μBμν þ ∂νηÞ2 − d̄ν□dν

þ ξðdÞ −mðdÞ
ξðdÞ

d̄μ∂μ∂νdν þmðdÞd̄□d; ð9Þ

where one notices the first-level ghosts for the two-form
gauge invariance ðdμ; d̄μÞ at ghost number ð1;−1Þ, as well
as the second-level bosonic ghosts ðd; d̄; ηÞ at ghost number
ð2;−2; 0Þ, respectively. The gauge fixing of the two-form
invariance is controlled by ξðBÞ, while that of the residual
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ghost invariance by ξðdÞ. We consider an extra parameter,
mðdÞ, whose relevance is ultimately related to anti-BRST
invariance, as discussed below. The equations of motion are
given by

□hμν −
ξðhÞ þ 2

ξðhÞ
ð2∂ρ∂ðμhνÞρ − ∂μ∂νhÞ ¼ jμνðhÞ; ð10aÞ

□Bμν þ
ξðBÞ þ 2

ξðBÞ
2∂ρ∂ ½μBν�ρ ¼ jμνðBÞ; ð10bÞ

□φ ¼ jðφÞ; ð10cÞ

complemented by those for the ghosts, which we omit for
brevity. The Lagrangians, Eqs. (8) and (9), are invariant
under the BRST transformations

Qhμν ¼ 2∂ðμcνÞ Qφ ¼ 0

Qcμ ¼ 0 Qc̄μ ¼
ð∂νhμν − 1

2
∂μhÞ

ξðhÞ

QBμν ¼ 2∂ ½μdν� Qdμ ¼ ∂μd

Qd̄μ ¼
ð∂νBνμ þ ∂μηÞ

ξðBÞ
Qd ¼ 0

Qd̄ ¼ 1

ξðdÞ
∂μd̄μ Qη ¼ mðdÞ

ξðdÞ
∂μdμ: ð11Þ

Note, our choice of Einstein frame implies the BRST
invariance of the dilaton Qφ ¼ 0. We can go to string
frame, where Qφ ¼ ∂μcμ, via a field redefinition, but at
linear order such redefinitions are trivial sums.
The gravity ¼ gauge × gauge dictionary.—We are now

in the position to construct a gravity ¼ gauge × gauge
dictionary such that the gravitational equations (10) and
BRST variations (11) are derived from those of the Yang-
Mills factors in Eqs. (6) and (7).
We begin with the simplest case of the dilaton to clarify

the main points. Crucially, the dilaton dictionary must
necessarily be able to reproduce Eq. (10c) without appeal-
ing to a convenient choice of ξ. For example, the naive
dictionary φ ¼ Aρ ∘ Ãρ þ αcα ∘ c̃α will not suffice, as
applying the d’Alembertian reproduces (10c) only for a
specific value of ξ. The most general ansatz compatible
with the required tensor structure, mass dimension, and
ghost number is given by

φ ¼ Aρ ∘ Ãρ þ α1cα ∘ c̃α þ α2
□

∂A ∘ ∂Ã; ð12Þ

where, crucially, we rely on □
−1 to allow for the ∂A ∘ ∂Ã

term. Note, while it has no bearing on Eq. (12) we will treat
the left and right factors democratically, so that the dic-
tionary is invariant under the interchange of the left and

right Yang-Mills theories. Similarly, the most general
ansatz up to ∂ρjρ ¼ −□∂A=ξ, the analog of current
conservation after BRST quantization, for the dilaton
effective source in Eq. (10c) is given by

jðφÞ ¼ α3
□

jρ ∘ j̃ρ þ α4
□

jα ∘ j̃α: ð13Þ

On applying □ to Eq. (12) we obtain three distinct terms

□ðAρ ∘ ÃρÞ¼
�
1−

1

ξ2

�
∂A ∘∂Ãþ 1

□
jρ ∘ j̃ρ; ð14aÞ

□ðcα ∘ c̃αÞ ¼ 1

□
jαðcÞ ∘ j̃αðcÞ; ð14bÞ

□ð□−1∂A ∘ ∂ÃÞ ¼ ∂A ∘ ∂Ã; ð14cÞ
where we have used the Yang-Mills equations (6).
The independent (up to equations of motion) tensor

structures behave much like an orthogonal basis, in that the
coefficient of each such term has to vanish separately to
satisfy □φ ¼ jðφÞ. Imposing the dilaton equation of
motion (10c) implies α3¼1, α4¼α1, and α2¼−1þ1=ξ2.
The final arbitrary parameter is fixed to α1 ¼ 1=ξ by
demanding that the dictionary reproduce the correct gravi-
tational BRST transformation, Qφ ¼ 0, given the BRST
variations of the underlying Yang-Mills fields (7), the rule
(2), and the fact that the BRSToperator anticommutes with
Grassmann-valued fields.
To summarize, the dictionary (12) for the dilaton yields

the correct gravitational equations of motion and BRST
transformations, given those of the two Yang-Mills factors.
Furthermore, the weights of each term in the dictionary are
uniquely determined in terms of the Yang-Mills gauge-
fixing parameter ξ. Note that this result crucially relies on
the introduction of the □

−1 terms. Since at linear level
Eq. (10c) is frame independent, a field redefinition cannot
be used to remove the nonlocal terms.
Applying the same reasoning for graviton and two-form,

we can then give the final dictionaries for all three physical
fields: (1) The graviton

hμν ¼ Aðμ ∘ ÃνÞ þ a1
∂μ∂ν

□
A ∘ Ã

þ a2
∂μ∂ν

□
cα ∘ c̃α

þ a3
□

ð∂A ∘ ∂ðμÃνÞ þ ∂ðμAνÞ ∘ ∂ÃÞ

þ ημν

�
b1A ∘ Ãþ b2cα ∘ c̃α þ b3

□
∂A ∘ ∂Ã

�
: ð15Þ

(2) The Kalb-Ramond two-form

Bμν ¼ A½μ ∘ Ãν�

−
1

2□
ð∂A ∘ ∂ ½μÃν� − ∂ ½μAν� ∘ ∂ÃÞ: ð16Þ
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(3) The dilaton

φ ¼ Aρ ∘ Ãρ þ
1

ξ
cα ∘ c̃α þ

�
1

ξ2
− 1

�
1

□
∂A ∘ ∂Ã; ð17Þ

where

a1 ¼
1

1 − ξ
; b1 ¼

ξ

ð2 −DÞðξ − 1Þ ; ð18aÞ

a2 ¼
1þ ξ

2ð1 − ξÞ ; b2 ¼ b1=ξ; ð18bÞ

a3 ¼ −1=2; b3 ¼
�
1

ξ2
− 1

�
b1: ð18cÞ

As anticipated, these consistently map the Yang-Mills
equations of motion (6) into the gravitational equations
of motion (10). In addition, they map the Yang-Mills BRST
variations (7) into the gravitational BRST variations (11),
under the action of Q; in the process, we read off the
dictionaries for the ghosts:

cμ ¼
1

4

�
c ∘ Ãμ þ Aμ ∘ c̃

−
ξþ 1

ξ

∂μ

□
ðc ∘ ∂Ãþ ∂A ∘ c̃Þ

�
; ð19aÞ

dμ ¼
1

4

�
c ∘ Ãμ − Aμ ∘ c̃

−
ξþ 1

ξ

∂μ

□
ðc ∘ ∂Ã − ∂A ∘ c̃Þ

�
; ð19bÞ

d ¼ 1

2ξ
c ∘ c̃; ð19cÞ

η ¼ 1

4
ðc ∘ ˜̄cþ c̄ ∘ c̃Þ: ð19dÞ

The corresponding antighosts are equivalently obtained by
either acting with the Yang-Mills anti-BRST operator Q̄ or
by replacing c → c̄. The bosonic ghost η has ghost number
zero and maps to itself. Once again, the gravity sources are
uniquely built out of j ∘ j̃ terms and can be determined
directly from Eqs. (15) and (16). The inclusion of the (anti)
ghost sources allows for independent graviton and dilaton
sources (cf. Sec. 4 of Ref. [26]) by reintroducing the
independent trace of the graviton source in close analogy to
the graviton and dilaton field dictionaries given in Eqs. (15)
and (17). Note that in the preceding analysis we have
restricted to terms of order□−1. We can, however, consider
the complete □

−n expansion. The only additional, admis-
sible, and nontrivial term is at order □−2 and can only be
consistently included for the graviton. Although it

introduces an additional parameter [45], it does not change
the present results.
The linearized Riemann tensor is related to the left and

right field strengths by

Rμνρσ ¼
1

2
ðFμν ∘ F̃ρσ þ Fρσ ∘ F̃μνÞ

þ ∂ ½μ∂ ½νησ�ρ�

�
b1A ∘ Ãþ b2cα ∘ c̃α þ b3

□
∂A ∘ ∂Ã

�

ð20Þ

and

Fμν ∘ F̃ρσ ¼ ∂ ½μZν�½ρ;σ�; ð21Þ

where

Zμν ¼ hμν þ Bμν − b1ημνφ: ð22Þ

Conclusions.—Using the field-theoretic product of in-
dependent Left and Right gauge theories given in (1) we
have shown that the equations of motion and BRST
variations of the graviton, two-form and dilaton follow
from those of two pure Yang-Mills gauge potentials, to
linear approximation. The dictionary, with our previously
stated assumptions, relating the gravity fields to those of the
Yang-Mills theories is unique up to order □

−1. The
coefficient of the unique □−2 term, □−2∂μ∂ν∂A ∘ ∂Ã, that
can be included in the graviton ansatz remains unfixed at
linear order and can be freely set to zero, but may be
important at the next to linear order or higher.
Note, we chose to perform the calculations using a

specific one-parameter family of gauges, sufficient to make
the pertinent features of the construction apparent. This
yields a one-parameter family of gauges for the graviton
and two-form. However, we could have chosen any other
family of gauges to start out with. Turning the handle the
conclusions would remain the same, although the details
would reflect the new choice. In this sense, our construction
is gauge independent. This can be made manifest by not
specifying the gauge-fixing functionGðA; bÞ at all and then
following the exact same logic.
A novel feature of the formalism is the gratis appearance

of anti-BRST symmetry. Since the Yang-Mills factors are
anti-BRST invariant, they have anti-BRST transformations
that will generate anti-BRST transformations for the
graviton and two-form. Consequently, we obtain an anti-
BRST invariant formulation. Interestingly, in the standard
treatment of a free Abelian two-form, the BRST and anti-
BRST charges do not anticommute [46]. As shown in
Ref. [47], their anticommutation requires a modification
similar to the Curci-Ferrari condition for non-Abelian one-
forms. Here, anticommutation is automatically inherited
from the Yang-Mills factors and, hence, we must have in
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fact landed on the modified two-form theory. Indeed,
consistency with the equations of motion and BRST
variations requires mðdÞ ¼ ξðdÞ, reproducing precisely
the formalism of [47], with the two-form ghost in
Lorenz gauge.
Another feature of this gravity ¼ gauge × gauge map is

the simplicity with which one is able to control the one-
parameter family of gauge fixing: in addition to the
dictionaries themselves being fully fixed in terms of ξ,
one also has the relation

ξðhÞ ¼ ξðBÞ ¼ 2ξðdÞ ¼ ξ: ð23Þ
Then, it is compelling to ask which choices of ξ produce
especially tractable cases. For instance, we could choose to
simplify the Yang-Mills side with ξ ¼ −1, corresponding to
the Feynman-’t Hooft gauge. Equations (6) become har-
monic and the propagator is just

D̃μν
F ¼ −iημν

k2 þ iε
: ð24Þ

In this gauge, the gravity equations of motion and gauge-
fixing functionals lose any dependence on the □

−1 terms.
Conversely, we can obtain the same simplification on the
gravity side by fixing ξ ¼ −2:

□hμν ¼ jμνðhÞ; □Bμν ¼ jμνðBÞ; □φ ¼ jðφÞ:

There are a number of further directions one might
pursue. Most pressing is the need to go to higher orders in
perturbation theory. This also motivates the interesting
possibility of extending the map to the whole field-antifield
formalism. For certain applications it may also be useful to
allow for distinct (families) of gaugings in the left and right
factors. This would necessarily break invariance of the
dictionary under the interchange of the left and right factors
and would deform the OSp(2) symmetry of the ghost ⊗
antighost sector. Finally, although we have restricted our
attention here to bosonic fields, following Refs. [27,40,41]
it would be straightforward to extend to super Yang-Mills
theory and supergravity, particularly when an off-shell
superfield formalism is available, in which case the
auxiliary fields are retained in both the gauge factors
and their product.
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