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When a black hole forms from collapse in a holographic theory, the information in the black hole interior
remains encoded in the boundary. We prove that the area of the black hole’s apparent horizon is precisely
the entropy associated with coarse graining over the information in its interior, subject to knowing the
exterior geometry. This is the maximum holographic entanglement entropy that is compatible with all
classical measurements conducted outside of the apparent horizon. We identify the boundary dual to this
entropy and explain why it obeys the second law of thermodynamics.
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Introduction.—The second law of thermodynamics
states that entropy increases with time. One natural notion
of entropy is the von Neumann entropy:

S½ρ� ¼ −trðρ ln ρÞ; ð1Þ
where ρ is the densitymatrix of a quantum system.However,
this quantity is conserved under unitary time evolution, in
apparent tension with the second law. To obtain an increas-
ing entropy, it is necessary to coarse grain S by “forgetting”
certain information, since the vast majority of microscopic
data in a thermal system is inaccessible to macroscopic
observations. One common coarse-graining method is the
maximization of the system’s entropy subject to fixed the
values of a set of feasible macroscopic measurementsMðtÞ
at a moment in time [1–3]:

ScoarseðtÞ ¼ max
ρ0

½S½ρ0�∶MðtÞ�: ð2Þ

Assuming that any ordered information inaccessible at early
times remains so at later times, Scoarse should increase with
time, defining a nontrivial second law.
The most mysterious application of the second law is

to black holes. Stationary black holes (e.g., Kerr) have
entropy, which is proportional to the area of their horizonH
[4,5]:

SBH ¼ Area½H�
4Gℏ

; ð3Þ

as suggested by the laws of black hole mechanics [4–7].
However, despite some clues from string theory and other
approaches (reviewed in Ref. [8]), it is still unclear in
general what microscopic quantum-gravitational degrees of
freedom are counted by this entropy. Dynamically evolving
black holes such as those formed from stellar collapse are
even more controversial, since there are multiple possible
definitions of a horizon, e.g., the event horizon and the
apparent horizon [9]—and correspondingly, multiple area
increase theorems [6,10–14].
In holographic models of quantum gravity, a black hole

is dual to some boundary state ρ whose von Neumann
entropy S½ρ� can be computed from a compact extremal
(HRT) surface in the bulk, as conjectured in Refs. [15,16]
and essentially proven in Refs. [17,18]:

S½ρ� ¼ Area½XHRT�
4Gℏ

: ð4Þ

A surface is extremal if its area is unchanged by any first
order perturbation to the surface’s location; if there is more
than one, XHRT is the one with the minimal area extremal
surface (and homologous to the boundary [16,19]).
(Because we restrict attention to the entropy of the whole
CFT, in this case the HRT surfaces are compact and do not
reach the boundary.) This quantity is independent of time,
so it is not suitable for describing the entropy increase of a
growing black hole. Unitarity of the boundary theory
implies that no information is lost, but this is not enough:
to account for the increase of black hole entropy, a coarse
graining scheme must be specified.
Even though black hole thermodynamics was the origi-

nal motivation for the holographic principle [20,21], no one
has yet given a clear explanation of the role of the black
hole horizon as a repository of information about the
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interior. Indeed, it was recently shown [22] that if we know
the outcome of all classical measurements MðtÞ outside
of the event horizon H, then Scoarse < Area½H�=4Gℏ:
we have access to too much information for our remain-
ing ignorance to be given by the event horizon’s area (thus
refuting a broad class of proposals relating entropy to area,
including [23–26].)
We therefore look for alternatives to the event horizon.

An appealing option is the apparent horizon μ, the
outermost compact surface (at a moment of time) which
is marginally outer trapped [9], i.e., the expansion θk≡∇k lnðArea½n�Þ ¼ 0, where k is a future-outwards null
vector, and n is a small pencil of light rays shot out in
the k direction from a small neighborhood of a point on μ.
In the case of a black hole that forms from collapse, such
marginally trapped surfaces form behind the event horizon,
even though the HRT surface is the empty set (so that the
boundary state is pure).
In this Letter, we give a geometric proof (using classical

GR methods in the bulk) that the area of the apparent
horizon μ does play the role of a coarse-grained entropy:

Scoarse ¼ Area½μ�
4Gℏ

; ð5Þ

where we coarse grain over the region behind the apparent
horizon (the “microstates”) while holding all classical
measurements in the exterior fixed (i.e., we fix all data
in the exterior, but working in the classical regime). This
makes it plausible that the interior is encoded holograph-
ically by a set of independent qubits, one per 4= ln 2 Planck
areas, on the apparent horizon (but not the event horizon)
[27–30]. Our classical proof explicitly constructs the
entropy-maximizing geometry, which would correspond
to maximally scrambling all of these qubits. If our result
can be extended to the quantum regime (along the lines of
Refs. [31–35] it might provide insight into the firewalls
paradox [36–39], a puzzle about whether maximally
scrambled black holes have an interior. An investigation
on areas of noncompact analogues of the apparent horizons
will appear in Ref. [40].
Note that although apparent horizons are highly non-

unique due to the choice of time slicing, the above
construction is valid for each of them.
We also identify the boundary dual to Scoarse of the

apparent horizon. This quantity may be computed by
maximizing the boundary von Neumann entropy while
keeping fixed the outcomes of a set of “simple” experi-
ments performed after a given moment in time. This new
entry in the holographic dictionary (which we show is exact
to all orders in perturbation theory for near-equilibrium
black holes), extends the HRT prescription to a much more
general class of bulk surfaces.
Both the bulk and corresponding boundary entropies

automatically satisfy the second law. This provides the first

valid holographic explanation of the area increase law for
black holes.
Outer entropy.—The outer entropy is a coarse-grained

entropy that holds fixed the exterior of a codimension-2
surface σ. We define OW ½σ�, the outer wedge, as the region
spacelike outside of σ (on the side with the asymptotic
boundary). The outer entropy is

SðouterÞ½σ�≡max
ρ0

ðS½ρ0�∶OW ½σ�Þ; ð6Þ

where ρ0 is any state of the boundary CFT with a classical
bulk dual geometry M0; we choose ρ0 to maximize the von
Neumann entropy S½ρ0� ¼ XHRT½M0�, subject to the con-
straint that M0 have the same outer wedge OW ½σ� as the
original classical bulk M dual to ρ. Although we have
phrased this maximization in terms of the boundary state,
note that this can be regarded as a pure bulk construction
involving maximizing the area of the HRT surface. The
only holographic aspect (in this section) is the identification
of an extremal surface lodged inside the black hole with a
fine-grained entropy (i.e., the von Neumann entropy). Any
theory with such an identification—even one with asymp-
totically flat boundary conditions (should such a theory
exist)—allows the interpretation of SðouterÞ as a coarse-
grained entropy.
While this coarse-grained entropy can be defined for a

general surface σ, when σ ¼ μ, an apparent horizon, we
will show that

SðouterÞ½μ� ¼ Area½μ�
4Gℏ

: ð7Þ

Hence, the area of the apparent horizon has a statistical
interpretation as the maximum boundary entropy that is
compatible with the geometry of its exterior. This provides
a holographic answer to the disputed question: what
does the Bekenstein-Hawking entropy of a black hole
[41–46] count?
Outline of proof.—Let k (respectively, l) be the orthogo-

nal future-directed null vectors pointing outward (respec-
tively, inward) from a surface. An extremal surface X
satisfies θk ¼ θl ¼ 0. An HRT surface additionally must
be the minimal area surface (homologous to the boundary)
on some spatial slice Σ [47].
An apparent horizon μ (an outermost marginally

trapped surface) satisfies θk ¼ 0, θl ≤ 0, and (generically)
∇kθl < 0 [48,49]. We assume that μ is homologous to the
boundary; i.e., there exists a spatial slice Σ connecting μ to
the boundary, and moreover that there exists a Σ such that
the area of any surface circumscribing μ is larger than the
area of μ. These requirements are reasonable for black hole
horizons.
In any spacetime, Area½XHRT� ≤ Area½μ�; this can be

proven by a simple focusing argument: in a spacetime
satisfying the null energy Ccondition (Tvv ≥ 0 for any null
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vector v), a null surface N�k½μ� shot out along the �k
direction of μ has monotonically decreasing area moving
away from μ along N�k in the þk or −k directions, where
we truncate the surface when generators intersect [9,50,51].
We extend N�k along its generators to the slice Σ on which
XHRT is minimal [47].

Area½μ� ≥ Area½Σ ∩ N�k½μ�� ≥ Area½XHRT�: ð8Þ

Hence, the entropy S½ρ0� cannot exceed Area½μ�=4Gℏ.
To prove that this inequality is saturated, we construct a

bulk spacetime M0 (with the same outer wedge OW ½μ�)
satisfying Area½XHRT� ¼ Area½μ�. To specify the interior
data in M0, we impose initial data on N−k, the null surface
fired from μ in the −ka direction. We choose our initial data
so that the surfaceN−k is stationary; every cross section has
the same geometry. (The Appendix shows this construction
satisfies the constraint equations, so that a spacetime
solution M0 exists, due to ∇lθk < 0.)
By following N−k far enough, we eventually come to an

extremal surface X (see Appendix for details). Since N−k is
stationary, Area½X� ¼ Area½μ�. We can complete the space-
time by requiring it to be invariant under a CPT reflection
about X (i.e., we reflect space and time about X while
exchanging matter with antimatter). See Fig. 1. The
resulting bulk M0 has two asymptotic boundaries, and
therefore represents a pure state (analogous to the thermo-
field double wormhole construction [52]). When the state ρ0
is restricted to a single boundary, the entropy S½ρ0� ¼
XHRT½M0�. (Note that the region OW ½XHRT� agrees with
the original bulk geometry dual to ρ [47,53–57].)
Because N−k is stationary and by assumption μ is

minimal on a slice of OW ½μ�, we now have an initial data
slice Σ on which X is the minimal cross section. Any other
extremal surface X0 has greater area than X:

Area½X0� ≥ Area½Σ ∩ N�k½X0�� ≥ Area½X�; ð9Þ

where the first inequality comes from the focusing of a null
surface N�k½X0� shot out from X0. Hence X ¼ XHRT,
proving Eq. (7).
Simple entropy.—Thus far, our coarse-grained entropy

has been defined from the bulk point of view. We now
identify the boundary dual to the outer entropy, which we
call the simple entropy, as it relies on “simple operators.”
In AdS/CFT, single trace operators on the boundary

correspond to locally propagating fields in the bulk. More
generally, we expect that the product of a small number of
single trace operators also propagates locally in the bulk.
However, it is known that sufficiently complicated operators
(known as precursors [58,59]) can change the deep bulk
region acausally; hence to define a coarse graining that is
dual to OW ½μ� we must avoid such complicated operations.
We therefore define a simple experiment as a procedure
performed after a moment of time ti, in which we measure a
local operatorOðt > tiÞ after having turned on a set of local
sources Jðt > tiÞ; we require that these sources propagate
causally into the bulk. For classical solutions, we can restrict
attention to one-point operators and sources, since the
higher-point functions are determined from them. (The
“one-point entropy” [26], proposed as a holographic dual
to the area of the event horizon, did not allow sources.)
To prevent recurrences, we implicitly include a late time
cutoff tf prior to exponentially large values of t.
The simple entropy is now defined as the maximum

entropy of a state ρ0 compatible with the outcomes of all
such simple experiments (i.e., the maximization is done
over a subspace of ρ’s that all yield the same outcomes):

SðsimpleÞðtiÞ ¼ max
ρ0

ðS½ρ0�∶hE†OðtÞEifixedÞ; ð10Þ

where ρ0 is defined at ti, and

E ¼ T exp

�
−i

Z
t

ti

Jðt0ÞOJðt0Þdt0
�

ð11Þ

is the time-ordered insertion of sources JðtÞ used to prepare
the simple experiment by which OðtÞ is measured.
A simple experiment, by definition, can only access the

subset of the bulk FðtiÞ that is to the future of the boundary
time ti. When the spacetime has a black hole, turning on
simple sources can shift the location of any event horizonH
in the spacetime [60]. However, the event horizon must
always remain outside of any marginally trapped surface
(assuming the null energy condition) [9,51]. Therefore, if μ
is a marginally trapped surface on NðtiÞ, the boundary of
FðtiÞ, a simple experiment can access at most the outer
wedge OW ½μ�. Note that by causality, turning on simple
sources cannot modify the fact that μ is marginally trapped
(a similar argument was given for extremal surfaces in
[33]). See Fig. 2(a). It immediately follows that

FIG. 1. The coarse-grained spacetime dual to the state ρ0 with
maximal S½ρ0� and fixed OW ½μ� (shaded gray). The null con-
gruence N−k (red) is fired from μ towards the −k direction and is
stationary. The congruence N−l, the past boundary of OW ½μ�, is
fired in the −l direction from μ. X is the HRT surface of the
coarse-grained spacetime. Tilded quantities represent the CPT
mirror reverse.
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SðsimpleÞðtiÞ ≥ SðouterÞ½μ�: ð12Þ

If NðtiÞ contains more than one marginally trapped
surface, we restrict attention the earliest (i.e., outermost)
one. This guarantees that μ is in fact an apparent horizon.
We propose that in this case, the inequality (13) is saturated.
In other words the simple entropy is the holographic dual of
the area of the apparent horizon.
We now show that this is true for a black hole that is

approaching thermal equilibrium after time ti. We may use
the “HKLL” procedure [61–67] to reconstruct the “causal
wedge” CW ½ti� of ti, i.e., the subset of FðtiÞ outside of the
event horizon [68,69]. If no matter or gravitational radiation
were falling across the event horizon H, it would be
stationary; there would be no separation between H and
μ, and we would be done. In order to reconstruct the data in
OW ½μ�, we must ensure that no matter falls acrossH after μ.
Since μ is perturbatively close to the event horizon,

Refs. [63,70] allow us to map the matter fields falling
across the event horizon to data on the boundary. We can
therefore turn these fields “off” by adding suitable sources
to the boundary after ti. This has the effect of shifting the
event horizon to the location of μ, so that CW ½ti� ¼ OW ½μ�.
(When light rays in NðtiÞ intersect before reaching μ,
OW ½μ� ⊃ CW ½ti� since the past boundaries do not coincide.
However, OW ½μ� still lies in the domain of dependence of
CW ½ti� allowing reconstruction of the full data [71].) This
shows that we can use HKLL to reconstruct the spacetime
data arbitrarily close to μ. (Although to reconstruct points a
distance ϵ from μ, we need to wait a time of order lnðϵ−1Þ
for the signal to reach the boundary.) This shows that, order
by order in small perturbation to a stationary black hole,

SðsimpleÞðtiÞ ¼
Area½μ�
4Gℏ

: ð13Þ

This is a new entry in the holographic dictionary, which we
conjecture also holds for finite deviations from thermality.
An explanation for the second law.—A surface H foli-

ated by marginally trapped surfaces and satisfying certain
regularity conditions obeys an area law: the area of the mar-
ginally trapped surfaces increases with evolution along H
[10–14]. In the case where the marginally trapped surfaces
foliating H are apparent horizons, H must be spacelike
[10], and are called trapping horizons [10], dynamical
horizons [11,72], or spacelike future holographic screens
[13]. The area law for these surfaces says that the area of
slices of H increase going in an outward direction.
The spacelike holographic screen H is illustrated in

Fig. 2(b) in a collapsing black hole, where such objects
are ubiquitous. The area increases in outwards evolution
along apparent horizon slices ofH. The corresponding outer
wedges are nested: evolving in the direction of increasing
area corresponds to computing the outer entropy of pro-
gressively smaller outer wedges. This provides an immedi-
ate explanation for why the outer entropy increases alongH:
evolution along H is the equivalent of maximizing the von
Neumann entropy with progressively fewer constraints.
Fromaboundary perspective, the simple entropy increases

for much the same reason, since as ti is increased, there are
fewer simple experiments available. It may seem odd that the
simple entropy also allowsmeasurements to bemade at times
after ti, but this is equivalent to saying that, for a coarse-
graining scheme to have a second law, information cannot be
discarded if it is going to become available later. (Our very
late time cutoff tf, which is held constant as ti is increased,
prevents us from having to worry about recurrences.)
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Appendix: Constraint equations.—Since we are impos-
ing data on N−k, we need to use the “characteristic initial
data formalism” [73–79], which guarantees the existence of
a solution (Luk [76] only guarantees a local solution, but
then presumably it is possible to deform the characteristic
Cauchy slice into a nearby spacelike slice, guaranteeing the
existence and uniqueness of M0 [51].) if we satisfy the
following constraint equations on N−k (one for each
spacetime dimension D):

∇kθk ¼ −
1

D − 2
θ2k − ς2k − 8πGTkk; ðA1Þ

∇kχi ¼ −θkχi þ
�
D − 3

D − 2

�
∇iθk − ð∇ · ςkÞi þ 8πTik;

ðA2Þ

(a) (b)

FIG. 2. (a) We fire a null congruence N−l into the bulk from
time t ¼ ti. The surface μ is the first cross section of N−l with
vanishing k expansion. We can recover all the data in OW ½μ�, at
least when the black hole is near equilibrium, by means of a
“simple experiment” performed after time ti. (b) A spacelike
holographic screen (purple) has increasing area in a spacelike
direction, going from 1 to 3. The corresponding outer wedges are
nested, implying that the outer entropy must increase outwards.
Similarly, the simple entropy must increase with t from t1 to t3.
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∇kθl ¼ −
1

2
R − 2∇ · χ − θlθk þ 2χ2 þ 8πGTlk; ðA3Þ

aswell as the corresponding junction conditionswhich require
θk, χi, and θl to be continuous. Here ςk is the shear tensor,
which is free data onN−k;R is the intrinsicRicci curvature of
cross sections of N−k; χi is a D − 2 component twist 1-form
gauge field that tells you how much a normal vector gets
boosted when transported in the transverse i direction; Tab is
the stress tensor.All quantities are defined on constant v slices,
wherev is an affine parameter defined on each null geodesic of
N−k, normalized so that ∇k ¼ ∇v, and k · l ¼ −1.
We can solve these constraint equations for stationary

N−k by stipulating that ς ¼ θk ¼ Tkk ¼ Tki ¼ 0, while R,
χi, Tlk are constant along v. The marginality condition
θk½μ� ¼ 0 ensures continuity of θl and θk on the junction
between N−k and OW ½μ�. The shear is generically discon-
tinuous across the junction, but that is not a problem for
local evolution of the Einstein equation [80,81]. We assume
without proof that evolution is possible with AdS boundary
conditions.
The above conditions on the stress tensor can be satisfied

by reasonable matter fields. For a minimally coupled scalar
field ϕ, take ϕ ¼ constant in the k direction; for a Maxwell
field Aa, impose ∇kAi ¼ 0 in the gauge Ak ¼ 0. In the
Maxwell case there is one additional constraint equation for
∇kFlk that is satisfied if the current jk ¼ 0.
Because μ is a apparent horizon, generically ∇kθl < 0

on N−k and θl½μ� < 0. It follows that there exists an
extremal cross section X of N−k with θl ¼ 0 (and
θk ¼ 0). We can solve for the location of X:

0 ¼ θl½μ� þ θl;kvþ□vþ 2χ · ∇v; ðA4Þ

where v is a function of the transverse directions. There is a
unique solution to this equation, with v < 0 (see Ref. [82]).
To complete our spacetime M0, we invoked CPT

conjugation across the extremal surface X. The junction
conditions are satisfied at X because θl ¼ θk ¼ 0 while χi,
Flk, Ai and ϕ are even under CPT; for more general matter
fields, we expect that CPT invariance ensures that this
gluing is always possible.
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