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Fluctuation relations are powerful equalities that hold far from equilibrium. However, the standard
approach to include measurement and feedback schemes may become inapplicable in certain situations,
including continuous measurements, precise measurements of continuous variables, and feedback induced
irreversibility. Here we overcome these shortcomings by providing a recipe for producing detailed
fluctuation relations. Based on this recipe, we derive a fluctuation relation which holds for arbitrary
measurement and feedback control. The key insight is that fluctuations inferable from the measurement
outcomes may be suppressed by postselection. Our detailed fluctuation relation results in a stringent and
experimentally accessible inequality on the extractable work, which is saturated when the full entropy
production is inferable from the data.
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Introduction.—Most devices that simplify our daily lives
are far from equilibrium, consuming and dissipating
energy. A thorough understanding of nonequilibrium phys-
ics is therefore of pivotal importance for the development of
novel technologies. However, systems that are far from
equilibrium are notoriously difficult to describe. This holds
especially true for small systems, where fluctuations cannot
be neglected. During the last 25 years, a number of
powerful thermodynamic equalities that hold far from
equilibrium have been developed (for recent reviews, see
Refs. [1–7]). The most prominent of these are the Jarzynski
relation [8,9] and the Crooks fluctuation theorem [10–14]
(see also Refs. [15,16]). These equalities involve the
probability distributions of work or entropy production
along trajectories through phase space and constitute
important results in the field of stochastic thermodynamics.
Recent experimental advances in observing and control-

ling small systems opened up the possibility of optimizing
the process at hand using feedback control [17]. Promising
platforms for such experiments include electronic systems
[18–22], DNA molecules [23,24], photons [25], Brownian
particles [26], and superconducting circuits in the quantum
regime [27–29]. These experiments probe the thermody-
namics of information [30–33], a field which goes back to
the thought experiments of Maxwell and Szilard [34–36],
where microscopic information is used to seemingly violate
the second law and to produce useful work. Under
measurement and feedback schemes, fluctuation relations
and second-law-like inequalities can still be derived by
including a term that represents the obtained information
[37–57]. For the Jarzynski relation, the most prominent
generalizations read [39,43]

he−σ−Ii ¼ 1 ⇒ hσi ≥ −hIi; ð1Þ

he−σi ¼ γ ⇒ hσi ≥ − ln γ; ð2Þ

where I denotes the transfer entropy (the average of
which reduces to the mutual information for a single
measurement), γ the efficacy parameter, and σ the entropy
production.
While existing fluctuation relations constitute powerful

results, they are unfortunately not always applicable and a
detailed fluctuation relation for arbitrary measurement and
feedback scenarios is still lacking. The problems that can
arise can be exemplified with the help of Eqs. (1) and (2),
where we identified three key shortcomings. (i) The quan-
tities I, hIi, and γ can diverge, rendering Eqs. (1) and (2)
inapplicable. In particular, I diverges when the feedback
introduces absolute irreversibility. A naive evaluation of the
Jarzynski relation in Eq. (1) then yields the wrong result
[40,58]. The average of the transfer entropy hIi can diverge,
e.g., for continuous measurements, when the amount of
information extracted from the system diverges [50].
Moreover, the efficacy parameter γ can diverge for feed-
back schemes that include a large number of control
protocols to choose from (see below). (ii) The transfer entropy
I is not directly measurable as it contains information on the
correlations between system and measurement apparatus
[44,45]. This limits the practical relevance of Eq. (1).
(iii) For Eq. (2), there is to date no corresponding detailed
fluctuation relation which relates probabilities in a forward
experiment to probabilities in a backward experiment. Given
these shortcomings, it is highly desirable to obtain refined
detailed fluctuation relationswhichhold for anymeasurement
and feedback scheme. For error-free measurements, an effort
in this direction has been made in Ref. [49].
In this Letter, we overcome the shortcomings of fluc-

tuation relations in the presence of measurement and
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feedback with two interrelated contributions. First, we
provide a novel recipe for obtaining fluctuation relations.
Upon defining a backward experiment our recipe provides
the associated fluctuation relation, including the corre-
sponding information terms. This allows one to tailor
useful fluctuation relations, Jarzynski relations, and sec-
ond-law-like inequalities for the problem at hand. Second,
we use this recipe to find a detailed fluctuation relation that
circumvents the problems (i)–(iii) listed above. In the case
of error-free measurements, our fluctuation relation reduces
to the one found in Ref. [49].
A recipe for fluctuation relations.—Our starting point is

the detailed fluctuation relation for a fixed control protocol,
a fundamental relation which generalizes the second law
for stochastic systems [10–12,43,59–63]. In the notation
of Ref. [43], largely followed throughout this Letter, we
have [64]

P½X†jΛ†�
P½XjΛ� ¼ e−σ½X;Λ�: ð3Þ

Here the vector X ¼ ðx1;…; xNÞ denotes a system trajec-
tory through phase space, where time is discretized and xj
denotes the point in phase space the system occupies at
time tj. The time step tjþ1 − tj ¼ δt is assumed to be
infinitesimally small. Similarly, Λ ¼ ðλ1;…; λNÞ denotes a
trajectory of the control parameter (sometimes called
protocol). For instance, λj can be the value of an electric
field at time tj. The daggered quantities denote the time-
reverse of the undaggered ones, e.g., X† ¼ ðx�N;…; x�1Þ,
where x�j is the time reverse of xj and similarly for Λ. Note
that the daggered quantities are uniquely defined by the
undaggered ones.
Equation (3) can be understood as follows: P½XjΛ�

denotes the probability that the system takes trajectory X
when the control parameter is determined by Λ. The
probability P½X†jΛ†� of realizing the time-reversed trajec-
tory when applying the time-reversed control parameter is
related to P½XjΛ� by the exponentiated entropy production
[63] (see the Supplemental Material for a general definition
[65]). For experiments that start in thermal equilibrium,
and systems coupled to a single bath at temperature T,
the entropy production can be written as

kBTσ½X;Λ� ¼ ΔF½Λ� −W½X;Λ�; ð4Þ

where ΔF½Λ� corresponds to the free energy difference of
the equilibrium states at the beginning and at the end of the
experimental run and W½X;Λ� denotes the work extracted
from the system.
To include measurement and feedback, we denote by

Y ¼ ðy1;…; yNÞ a trajectory of measurement outcomes,
encoding information on X. Discrete measurements can be
obtained by taking most yj independent of the system
trajectory. Feedback is included by determining the control

parameter based on the measurement outcomes, i.e., ΛðYÞ.
We stress that Eq. (3) is still valid since it only involves
probabilities which are conditioned on the control param-
eter. For ease of notation, we omit the Y dependence of Λ
whenever there is no explicit Y dependence.
In the presence of measurement and feedback, the

forward experiment is described by a joint probability
distribution for system trajectory X and measurement
outcome Y [43]

P½X; Y� ¼ Pm½YjX�P½XjΛðYÞ�; ð5Þ

where Pm½YjX� denotes the probability that a fixed trajec-
tory X results in the measurement outcomes Y. For more
details, see Ref. [43]. For our purposes, the last equation
can be seen as the definition of Pm½YjX�. Equation (5)
illustrates that a feedback experiment includes two ingre-
dients. (1) A set of possible trajectories for the control
parameter, and (2) a decision procedure to determine which
trajectory is applied. Throughout this Letter, an experiment
is defined by these two ingredients as well as a possible
third one: (3) postprocessing of the measured data.
In the absence of measurement and feedback, there is

usually only a single trajectory for the control parameter
and ingredients (2) and (3) are unnecessary. The detailed
fluctuation relation in Eq. (3) then relates the forward
experiment to the backward experiment, which is provided
by applying the time-reverse of the control parameter
trajectory. In the presence of measurement and feedback,
defining a backward experiment is much less trivial. While
the control parameter trajectories can simply be time
reversed, it is not a priori clear how to fix ingredients
(2) and (3). As we will now discuss in detail, this freedom
in choosing the backward experiment results in many
different fluctuation relations.
Rewriting Eq. (3), we arrive at our first main contri-

bution, a general detailed fluctuation relation for joint
probabilities

PB½X†; Y†�
P½X; Y� ¼ e−σ½X;ΛðYÞ�−ðI½X∶Y�−I†½X†∶Y†�Þ; ð6Þ

where PB½X†; Y†� denotes the probability distribution for
the backward experiment; unspecified thus far. Here we
introduced the transfer entropy in the forward experiment

I½X∶Y� ¼ ln
P½X; Y�

P½XjΛðYÞ�P½Y� ¼ ln
Pm½YjX�
P½Y� ; ð7Þ

and in the backward experiment

I†½X†∶Y†� ¼ ln
PB½X†; Y†�

P½X†jΛðYÞ†�P½Y� ; ð8Þ
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and P½Y� ¼ R
dXP½X; Y�. To illustrate the usefulness of

Eq. (6) as a recipe for fluctuation relations, we consider the
following scenario: An experiment using measurement and
feedback has been designed and it is desired to investigate
the physics of the experiment with fluctuation relations.
While the forward experiment is fixed by the designed
experiment, there is a freedom in choosing the backward
experiment. For any chosen backward experiment, Eq. (6)
provides a fluctuation relation and allows for identifying
the corresponding information terms.
It is instructive to see how previous results can be

recovered from Eq. (6). To this end, we consider a back-
ward experiment where no feedback is performed. Instead,
the fixed control parameter Λ† is performed with the same
probability as Λ is applied in the forward experiment
(where it arises from feedback). This corresponds to the
backward probability PB½X†; Y†� ¼ P½X†jΛðYÞ†�P½Y�.
Equation (6) then results in the fluctuation relation asso-
ciated to Eq. (1) [39,43]. Here we mainly focus on
scenarios where PB describes an actual experiment and
is thus a normalized probability distribution. However,
for any function PB, Eq. (6) can be used to derive integral
fluctuation relations. For instance, we can recover the
integral fluctuation relation in Eq. (2) by choosing
PB½X†; Y†� ¼ Pm½YjX�P½X†jΛðYÞ†�, which is not a normal-
ized probability distribution. Indeed, when Eq. (11)
below holds, this distribution is normalized to the efficacy
parameter γ.
Other definitions of PB will result in different fluctuation

relations. More generally, one can demand conditions on
the backward experiment and/or the information terms in
Eq. (6) to find novel fluctuation relations. Generalized
Jarzynski relations and second-law-like inequalities can
then be derived in a straightforward manner.
A versatile fluctuation relation.—We now apply our

recipe to find a fluctuation relation which circumvents the
shortcomings (i)–(iii) listed in the introduction. To this end,

we impose two conditions: (I) The quantity ΔI½Y�≡
I½X∶Y� − I†½X†∶Y†� shall be fully determined by the meas-
urement outcomes; (II) The Y marginals of the forward and
backward probabilities shall be the same

R
dXPB½X†; Y†� ¼

P½Y�. The first condition ensures that the information term
ΔI is experimentally accessible, overcoming shortcoming
(ii). The second condition demands that a given set of
measurement outcomes Y is equally likely in the forward
and in the backward experiment.
These two conditions uniquely fix PB in Eq. (6),

resulting in our second main contribution, a detailed
fluctuation relation applicable for arbitrary measurement
and feedback scenarios. We now discuss both the backward
probability distribution as well as the information term
derived from our conditions (see the Supplemental Material
for detailed derivations [65]). First, we have ΔI½Y� ¼ −σcg,
where we introduced the coarse-grained entropy production
[43,66]

e−σcg½Y� ≡
Z

dXe−σ½X;ΛðYÞ�P½XjY�; ð9Þ

where P½XjY� ¼ P½X; Y�=P½Y�. We note that as long as the
total entropy production remains finite, σcg remains finite as
well, preventing the divergences related to shortcoming (i).
We find a generalized Jarzynski relation including the
coarse-grained entropy production

he−ðσ−σcg½Y�Þi ¼ 1 ⇒ hσi ≥ hσcg½Y�i; ð10Þ

where h� � �i denotes an average over the forward probability
distribution and the second-law-like inequality follows
from Jensen’s inequality.
Of key importance are scenarios which fulfill the

measurement time-reversal symmetry

Pm½YjX� ¼ Pm½Y†jX†�: ð11Þ

As we will see below, this condition leads to a particularly
illuminating physical interpretation of our fluctuation
relation and ensures that the backward probability distri-
bution has an operational meaning. We also note that this
condition underlies Eq. (2). Given Eq. (11), it can be shown
that a detailed fluctuation relation for the detector output
holds [43]

e−σcg½Y� ¼ e−σY ≡ P½Y†jΛðYÞ†�
P½YjΛðYÞ� ; ð12Þ

where P½YjΛ� ¼ R
dXPm½YjX�P½XjΛ� denotes the proba-

bility of obtaining the outcomes Y given the control
parameter Λ. From Eq. (5), we thus find P½YjΛðYÞ� ¼
P½Y�. Comparing Eq. (12) with the detailed fluctuation
relation in Eq. (3), we conclude that σY is the entropy

FIG. 1. Illustration of the fluctuation relation for measurement
and feedback. Both the system as well as the detector out-
put fulfill a detailed fluctuation relation. Here X (Y) denotes
a trajectory of the system state (detector output) and Λ
a trajectory of the control parameter. A detailed fluctuation
relation for the full experiment can be obtained, where the
total entropy production σ is reduced by the inferable entropy
production σY . Probability distributions are defined in the
text.
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production that we infer from observing only the meas-
urement outcomes (see also Fig. 1). We thus call it the
inferable entropy production. We note that the coarse-
grained entropy production is only equal to the inferable
entropy production when Eq. (11) holds. In the following,
we thus identify σY ¼ σcg, deferring a discussion on
scenarios where this is not the case to the Supplemental
Material [65]. Equation (12) implies hexp ð−σYÞi ¼ γ.
From Jensen’s inequality we then find hσYi ≥ − ln γ. The
inequality in Eq. (10) is thus strictly more stringent than the
inequality based on the efficacy parameter given in Eq. (2).
The backward probability obtained from our conditions

(I), (II), and Eq. (11) reads

PB½X†; Y†� ¼ P½X†jΛðYÞ†�
P½Y†jΛðYÞ†�Pm½Y†jX†�P½Y�: ð13Þ

This distribution has an operational meaning [overcoming
shortcoming (iii)] and can be obtained as follows:
In a backward experiment, the control parameter ΛðYÞ†
is applied with probability P½Y�. Just as in Ref. [43], Y† is
thus determined probabilistically at the beginning of each
experimental run. The same measurements as in the
forward experiment are then carried out but in time-
reversed order. Importantly, the measurement outcomes
are not used to update the control parameter. The data
are then postselected, discarding all experimental runs
where the measurement outcomes are not equal to Y†

when applying ΛðYÞ†. The distribution PB½X†; Y†� is the
joint probability for realizing X† and Y† in this backward
experiment. It is the postselection which results in the
reduction of the entropy production by the inferable entropy

production σY . Intuitively, having access to the measurement
outcomes, their fluctuations can be suppressed. This is
illustrated in Fig. 1. In case the full entropy production is
inferable from the measurement outcomes, i.e., σY ¼ σ, our
fluctuation relation reduces to the trivial equality 1 ¼ 1
reflecting the fact that the full entropy production is
accessible. Finding deviations from this trivial identity then
reflects the fact that not all entropy producing degrees of
freedom are perfectly measured. To verify this, the entropy
production must be measurable independently from Y.
Under our conditions, one can integrate Eq. (6)

over all X which result in the same σ to obtain a fluctuation
relation for entropy production [65]. We note that this is not
generally possible for previous fluctuation relations. For an
entropy production given by Eq. (4), this results in a
fluctuation relation for the extracted work W

P½W;Y�
PB½−W;Y†� ¼ e−βðW−ΔF½ΛðYÞ�Þ−σY ; ð14Þ

⇒ hWi ≤ hΔF½ΛðYÞ�i − kBThσYi; ð15Þ

where P½W;Y� is the joint probability of obtaining a value
W for the work and a measurement outcome equal to Y in
the forward experiment (and similarly for the backward
experiment). We note that in the absence of feedback, the
probability distributions factorize and Eq. (14) reduces to a
simple product between the Crooks fluctuation relation and
Eq. (12). To illustrate our results, we consider two well-
studied examples, the Szilard engine and a Brownian
particle in a harmonic trap. We note that Eq. (11) holds
for both examples.

(a) (b)

FIG. 2. Second-law-like bounds for the extracted work. The extracted work (blue, solid line) is compared to the inferable entropy
production (green, dash-dotted line), the logarithm of the efficacy parameter (red, dotted line), and the transfer entropy (cyan, dashed
line). (a) Szilard engine. On the horizontal axis, the final volume for measurement outcome y ¼ r is varied. For a broad range of
parameters, the inferable entropy provides the tightest bound on the extracted work. Here the measurement error probability is ε ¼ 0.1
and the final volume for measurement outcome y ¼ l is vl ¼ 0.65. (b) Brownian particle in a harmonic trap. On the horizontal axis, the
measurement error Σ2 divided by kBT=k is varied, where k denotes the spring constant of the trap. The transfer entropy diverges as the
measurement error goes to zero and the efficacy parameter diverges for all parameters. The inferable entropy provides a bound that
becomes tighter as the measurement becomes more precise. We note that in both examples, the transfer entropy equals the mutual
information since there is only a single measurement.
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The Szilard engine.—We consider a particle in a box of
volume v ¼ 1. A separation in the middle of the box is
introduced and the particle will be found to the left x ¼ L or
to the right x ¼ R of the separation with equal probabilities.
Subsequently, the location of the particle is measured with
an error ε resulting in a measurement outcome y ∈ fl; rg.
The separation is then slowly moved with the aim of
increasing the volume available to the particle to vy,
depending on the outcome of the measurement. Finally,
the separation is removed and the system returns to its
initial state.
Detailed calculations are given in the Supplemental

Material, where we verify the detailed fluctuation relation
given in Eq. (14) [65]. In Fig. 2(a), we show the extracted
work and compare it to the bounds given in Eqs. (1), (2),
and (15). We find that the inequality involving the inferable
entropy production gives a tighter bound than the estab-
lished inequalities for a range of parameters.
Brownian particle in a harmonic trap.—Our second

example consists of a Brownian particle in a harmonic trap
potential with spring constant k. After a position meas-
urement is performed, the trap potential is shifted, such that
the new minimum coincides with the measurement out-
come. As long as the thermal spread, kBT=k is larger than
the measurement error, denoted by Σ2, a positive amount of
work is extracted from the particle on average. As for the
Szilard engine, detailed calculations are given in the
Supplemental Material where Eq. (14) is explicitly verified
[65]. In Fig. 2(b), the extracted work is compared to the
transfer entropy and the inferable entropy production.
The efficacy parameter diverges in this scenario since
the position measurement has infinitely many outcomes,
resulting in infinitely many control parameter trajectories.
The transfer entropy diverges as the measurement error
goes to zero. The inferable entropy production provides a
useful bound for all parameters. We note that Ref. [49]
discussed the same example in the limit Σ → 0, where the
bound provided by the inferable entropy becomes tight.
As an additional example published elsewhere, our

results are applied to continuous measurements in single
molecule force spectroscopy experiments [67].
Conclusions.—We provided a recipe for obtaining fluc-

tuation relations in the presence of measurement and
feedback. This recipe relies on the freedom of choosing
a backward experiment and can be employed to develop
useful and experimentally relevant fluctuation relations.
This is illustrated with a detailed fluctuation relation which
overcomes the shortcomings identified in previous works.
The resulting relation allows for an intuitive explanation
and provides a second-law like inequality in situations
where previous fluctuation relations break down.
The freedom of choosing a backward experiment indi-

cates that there is no single fluctuation relation which is
universally optimal, but that each class of problems might
be best described by a tailor-made fluctuation relation.

The general validity of our recipe allows for the construction
of relevant fluctuation relations for any given problem
includingmeasurement and feedback. The approach outlined
here has thus great potential for obtaining a better under-
standing of nonequilibrium processes and will likely result in
additional practically useful equalities and inequalities.
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