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We present a Fermi liquid approach to superconducting Kondo problems applicable when the Kondo

temperature is large compared to the superconducting gap. To illustrate the theory, we study the current-phase

relation and the Andreev level spectrum for an Anderson impurity between two s-wave superconductors. In

the particle-hole symmetric Kondo limit, we find a 4z periodic Andreev spectrum. The 47 periodicity persists

under a small voltage bias which however causes an asymmetric distortion of Andreev levels. The latter

distinguishes the present 4z effect from the one in topological Majorana junctions.
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Introduction.—The interplay between superconductivity
and localized magnetic moments remains of central impor-
tance to modern condensed-matter physics. For instance,
spin-fluctuation mediated pairing is encountered in a broad
variety of unconventional superconducting materials [1,2].
Moreover, Yu-Shiba-Rusinov states induced by a magnetic
impurity in a superconductor [3-5] can be responsible for
Majorana bound states in magnetic atom chains deposited
on superconducting substrates [6,7]. A paradigmatic exam-
ple for superconducting Kondo problems is given by an
Anderson dot in the magnetic regime (where it can realize a
Kondo impurity) sandwiched between two conventional
s-wave BCS superconductors [8-23], with experimental
realizations available in nanoscale devices [24-30].
Numerical calculations [13,14,18,22] show that the low-
temperature physics is governed by the ratio Tg/A,
where A is the superconducting gap and 7 the Kondo
temperature (for A = 0). While the so-called z-junction
regime with T < A is accessible by perturbative renorm-
alization group (RG) methods [20,28], the complementary
O-junction regime with Tx > A has so far withstood
analytical progress apart from an exact solution for
Tx/A - oo [8] and different mean-field approximations
[9-12,15-17,19]. In more general terms, the Kondo effect
in a superconductor represents a long-standing open
theoretical problem.

We here formulate a Fermi liquid theory for the Kondo
effect in a superconductor which describes the regime
Tx > A in a systematic and controlled manner. For the
corresponding normal metal case, an elegant and asymp-
totically exact approach has been put forward by Nozieres
[31], cf. also Refs. [1,32-34]. His key insight was that the
Kondo singlet formed by the impurity spin and the electron
screening cloud can only be polarized, but not broken,
near the strong-coupling fixed point. One then arrives at
a Fermi liquid description by expanding the energy-
dependent phase shifts for elastic quasiparticle scattering
at low energies and by including residual local quasiparticle
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interactions [31-34]. We show below how those ideas can
be extended to the superconducting case where, in par-
ticular, Andreev reflection (AR) processes turn out to be of
key importance. Such processes can be fully captured by a
boundary condition accounting both for AR and elastic
scattering, cf. Eq. (7) below. For A =0, our approach
becomes equivalent to Nozieres’ theory. It also reproduces
the Tgx/A — oo solution of Ref. [8]. For a Fermi liquid
approach covering the opposite limit Tx/A — 0 in a
normal-superconductor junction, see Ref. [35].

We illustrate our theory for an Anderson impurity
between two s-wave BCS superconductors, see Fig. 1,
by studying the Josephson current-phase relation (CPR),
I(¢), as well as the Andreev level dynamics under a small
bias voltage V. With minor modifications, our theory can
be adapted to a plethora of interesting related problems,
e.g., multiple Andreev reflection phenomena (so far studied
only within mean-field schemes [10,12]), setups involving
topological superconductors [36—40], or multi-terminal
devices [21,41]. In the particle-hole symmetric Kondo
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FIG. 1. Schematic setup. (a) Semi-infinite left and right

(j = L/R, blue or red) superconducting leads at x < 0/x > 0,
respectively, harbor one-dimensional (1D) right (4) and left (—)
movers and are tunnel coupled (dashed lines) to an Anderson dot
(shaded circle) at x = 0. (b) Unfolded representation with 1D
chiral fermions.
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limit of the Anderson model, we predict a 4z periodic
Andreev level spectrum at low temperature 7 < A®/T%,
with zero-energy level crossings at ¢ = z(mod 2x). Such a
periodicity is also expected for topological Josephson
junctions with Majorana states [37-40,42] (for experimen-
tal signatures, see Refs. [43-45]) and for other setups
[46-48]. We find that under a small bias voltage V, the 4z
periodicity persists. However, in contrast to all previously
studied 4z periodic setups, the absorption and/or emission
spectrum near the zero-energy crossings becomes asym-
metric. This fact allows for experimental tests of the
underlying mechanism.

Model.—We start with an Anderson dot tunnel-coupled
to left and right superconducting leads (j = L/R), see
Fig. 1(a). Writing H=H,;+ H,+ H.,qs with H, =
eq(ny +ny) + Unyn, where n, = did, for dot fermions
d;, we have an interacting (U > 0) dot level at energy
g4 For simplicity taking identical dot-lead tunnel
couplings (#y), the point-like tunneling Hamiltonian is
H, = 1,5",d;b,(0) + H.c., with symmetric combinations
b, (x) of 1D left and right lead fermion operators, cf. Eq. (2)
below. Finally, H\.,qs describes s-wave BCS superconduc-
tor leads [49]. Each semi-infinite lead supports right and

left movers, l//(»i)

io (X) ~ e**rx In the equivalent unfolded
representation in Fig. 1(b), we have infinite chiral leads

containing only left- and right-moving field operators
w;s(x) for lead j= L/R, respectively, W(Liﬂ) (x<0)=

ey, (F x) and wﬁfg (x > 0) = eFkrryp (£x). To
simplify notation, we take the same absolute value A of
the superconducting gap on both sides and put 7 = e =
vrp = kg = 1 (the normal density of states is then just 1/7),
resulting in

Hleads = Z / dx( Z ll/JO' j:la )l//ja
J=L/R=+

ATy, (x >w,T<—x>+Hc>) ()

where ¢ is the phase difference. Next, we switch to the
linear combinations

ag(x) | _ 1 B
{b,,oc)}‘ﬁ[“”( Y) Fvra)l (2)

representing incoming (outgoing) fermion states for x < 0
(x > 0). The a modes obey open boundary conditions
corresponding to a,(0") = a,(0~), which for 7, = 0 also
apply to b modes.

In the magnetic regime, U > max(A,|ty|*>) and
-U < ¢; <0, the impurity corresponds to a spin-1/2
operator S, with the particle-hole symmetric Kondo
limit at e, = —U/2. A Schrieffer-Wolff transformation
yields H — H,,qs + Hg, where Hy contains a potential

scattering term (for ¢, # —U/2) and an exchange term
with coupling J > 0 between S and the spin density of b
fermions at x = 0 [1]. Importantly, @ modes always decou-
ple from the impurity and thus can be integrated out exactly.
Using the imaginary-time functional integral approach [49],
b modes are then governed by the action S, + [ dtH(7),
where S, = =3, , ¥ (k,0)G™! (k,®)P(k,w) with fer-
mion Matsubara frequencies @ and the Nambu spinor

W(x,7) — (;T_xxi ) Ze (-0 (k, ). (3)

Here and below, ¥(w) refers to the frequency representation
of a time-dependent spinor ¥(z). After taking into account
the pairing-induced bulk coupling between a and b fer-
mions, the free (7, = 0) Green’s function (GF) appearing in
S, is given by [cf. Eq. (1)],

iw+ kt, + Acos(¢p/2)z, ()
kK + w? + A ’

Glk,w) =—

where Pauli matrices 7, , act in Nambu space.
Weak-coupling regime.—At high energy scales, the

dynamics is restricted to the Hilbert subspace respecting

open boundary conditions. Integrating also over the bulk

b,(x # 0) modes, we obtain S, ==, ¥¥(0)G;' (0)¥(w)
with ¥(z) = ¥(0, ) and
_ [dk _ o+ Acos(¢/2)7,
R b v e

Standard energy-shell integration [49] then yields the one-
loop RG equations

ar 7 Q _ 3 Scos(¢/2) 26
at 1+ 8% ¢~ 4r i+t
where 6(¢) = A/D(¢). As the effective bandwidth

D(¢) = e7“D decreases with increasing RG flow para-
meter Z, a local pairing term, H g = Qb (0)b4(0) +H.c.,
is generated by AR processes. In fact, for ¢p # 7 (mod 27),
the growing exchange coupling J(¢) drives Q(¢) toward
strong coupling, resulting in Kondo-enhanced AR [20,28].
Note that Q(¢) ~ cos(¢/2) throughout the flow. However,
the RG approach breaks down at energies below
Tk ~ De "/ where one enters the strong-coupling regime.

Strong-coupling theory.—In the deep Kondo regime, the
impurity spin is almost perfectly screened by the leads. To
implement the Fermi liquid approach for the normal case, it
is convenient to employ a scattering state formalism where
the leading effects due to the polarizable Kondo singlet
come from energy-dependent phase shifts and residual
interaction corrections [31-34]. For the superconducting
case, we also need to include AR processes. This is
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achieved below by describing both AR and elastic scatter-
ing in a unified manner through a simple yet general
boundary condition. To that end, by performing a Wick
rotation, iw — E, with energy E relative to the chemical
potential u, we define ¥, (E) = ¥(x = 0%, E) from the
Nambu spinor (3) taken at x = 0%. Arbitrary elastic
scattering and AR processes are then captured by the
boundary condition

Na(E) )
(E) n,(-E))’
(7)

where the Nambu matrix 7j(E) has the most general form
allowed by Hermiticity of the self-energy (E) in Eq. (8)
below. While the real functions 7, (E) are energy-
dependent phase shifts precisely as in the normal case,
the complex-valued function #,(E) describes AR.

Next, Eq. (7) is linked to the retarded response of bulk
modes, ¥ (E) = 3.,¢*" GR(k, E)¥(E), to an effective
boundary field, ¥(E), living at x = 0. Using the retarded
GFs GR(k, E) and GE(E) obtained by Wick rotation from
Egs. (4) and (5), respectively, we find V., (E) = [GE(E) F
(i/2)7,]¥(E). Here, the 7, term originates from the
respective 7, term in Eq. (4). One can thereby write
Eq. (7) as equation of motion for the boundary spinor,

$(E) = Leoti(B)e..  (8)

G (E) + £(E)]¥(E) = 0, 3

Finally passing back to imaginary time and rescaling

W(z) = (1/V2)[b4(2), b]

L(r)]T, the strong-coupling action
is given by [cf. Egs. (5) and (8)]

Ssc[¥ Zqﬂ (0)G (@

G o) = Gy (@) = cotfi(io)]z..
Go' (@) = —2Go(w), ©)

)¥(w) + S,

while §; describes residual interaction corrections addressed
below. We emphasize that our self-energy formulation of AR
and elastic scattering processes in Eq. (9) is completely
general.

In order to arrive at a low-energy Fermi liquid theory,
we now expand 7(E) in powers of |E|/Tx <1 and
A/Tx < 1. Using the spin symmetry of the problem
and noting that conventional even-frequency pairing gen-
erated from Eq. (1) implies #,(—E) = n,(E), we find

m(E) =n,(E) =ngp +E+aE? + -,
na(E) = A(By + f3E* + - - ), (10)

where 7. is the quasiparticle phase shift at the Fermi energy
for A = 0. The Fermi liquid parameters «, and /3, scale as
1/T%, where the a,, determine the elastic scattering phase
shifts [31,34] and the complex-valued f, depend on the
phase difference ¢ (see below). Keeping all terms up to
order 1/T%, and using the renormalized parameters
&, = a,/ sin’np and B, = B,/ sin® ny, we arrive at

_1 _ _1 _ ﬂ((l)) - l&]a) B]A >
(@) =Gy’ (@) < BiA o) - i)
202 1 1B, 2 A2 i
Mw) = COU’[F<1 —%) + tw?. (11)

Further simplifications arise in the Kondo limit, where
particle-hole symmetry (which is not broken by pairing
terms) imposes the condition 7,e21(E)z = ¢=2(E) [50],
resulting in nr = 7/2, a; = 0, and f; = f;. In the Kondo
limit, we thus have A(w) = 0 in Eq. (11).

Residual interaction processes.—We now turn to S; in
Eq. (9). Keeping all terms up to order 1/T%, this action
contribution has the general form

/db ob_sbi(
25554

with expansion parameters i, ~ 1/T% (where it; > 0).
Defining normal ordering and averages (- - -), with respect
to the BCS ground state for Gy(w), cf. Eq. (9), it is
convenient to express Eq. (12) by virtue of Wick’s theorem
as S; = (Sp)o + S; + S, where S, is the normal-ordered
form of Eq. (12) and S¥ represents Hartree terms which can
be accounted for via the ( E) expansion in Eq. (10). Up to
order 1/T%, with u, = i, sin> yr, we find

ﬁza’[)bﬂ’ (12)

No(E) = nr + a1 E + aaE* — (uy + uE)SN_,,
14.(E) = p1A + 1,60, (13)

where 6N, and 6Q are self-consistent Hartree parameters
for local density and pairing fluctuations, respectively.
Again invoking spin symmetry, 6Ny =6N |, Eq. (13)
implies that Hartree terms can indeed be included by
renormalizing a,, and f3,,. We assume henceforth that this
renormalization has already been carried out. Moreover,
since the Kondo singularity is tied to the Fermi level, the
phase shifts #,(E) must be independent of the chemical
potential p [31,34]. This fact implies that one can derive
relations between Fermi liquid parameters without having
to specify 6N, or 6Q [31,34]. In particular, in the Kondo
limit, d,nF =0 and a, = u, =0 imply the well-known
identity u; = za; [31] and 0,a; = 0.

Current-phase relation.—The CPR follows as a phase
derivative of the free energy,
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() = 204F = Ly(¢) + Iy (¢) + 112 (). (14)

where 1,(¢) = -2T),0,IndetG' (w) is the Andreev
bound state (ABS) contribution, see Eq. (11). In particular,
the ABS spectrum follows by solving det[G~'(—iE)] = 0
for subgap energies, |E| < A. Keeping terms up to order
1/Tg, where A(—iE) =1 =cotpy [cf. Eq. (11)], this
condition reads

E2 |cos(¢/2) - BiVAT — B2 + 22
A? (1+a,VAZ—E)*+ 22

In the Kondo limit (with 4 = 0), Eq. (15) holds up to
order 1/T%.

The leading interaction contribution to the CPR, see
Eq. (14), follows from (S;), [50],

(15)

~ AZ
1) =6l singp, 6l ~— ”41712

n2(Tx/A).  (16)

As expected in the presence of repulsive quasiparticle
interactions, we obtain a decrease of the critical current,
81, < 0, where |61, ~ (A2/Ty)In?*(Tx/A) contains a log-
arithmic enhancement factor. Finally, 1 l(xi) describes higher-

order interaction corrections to the CPR due to S;. To order
1/T%, we obtain [50]

12(p) ~ i3A3 (sinqb + %Sin(2¢)> , (17)

where the sin(2¢) term describes coherent tunneling
processes involving two Cooper pairs.

Let us then turn to the dominant ABS contribution, see
Eq. (15), where the ¢ dependence of the AR coupling
follows from Eq. (6), B,(¢) = ycos(¢/2), with constant
y~1/Tg. (i) For T /A — oo, all Fermi liquid parameters
and thus also the interaction corrections (16) and (17) can
be dropped. Solutions to Eq. (15) are then given by E =

+A4/1—T sin®(¢/2) with the junction transparency
T =sin’np = 1/(1 4+ 2%). We thus readily recover the
results of Ref. [8]. (ii) Including 1/T corrections, see
Fig. 2, Eq. (15) predicts a 4z periodic ABS spectrum in the
Kondo limit (4 = 0), with zero-energy ABS crossings at
¢ = n(mod2x)). For A#0, we instead have avoided
crossings with gap E,~2+/1—TA, and thus obtain a
conventional 2z periodic spectrum. (iii) Fermi liquid
corrections imply a detachment of ABSs from quasiparticle

continuum states at ¢p = O(mod 27). The detachment gap,
5, = A — E4(0), follows from Eq. (15) as

: N A3
84 = 2sin*(ny) %) + Re(y)]* ~ 72" (18)
K

1 It St T o(t) =m+2Vt
E/A | IéA s

X

051

1.2

051

o/ *

FIG. 2. ABS spectrum vs phase ¢. Main panel: Black dotted
curves show the particle-hole symmetric limit with Tx /A — oo
[8]. Blue and red solid curves depict 4z periodic Andreev levels
for Tgy/A=5 A=0, and a; =y =1/Tg. Green dashed
curves illustrate the gap E, formed away from particle-hole
symmetry (1 = 0.2), leading to 2z periodicity. Inset: Asymmetry
of 4z-periodic adiabatic Andreev levels near the crossing at
¢ = r with voltage V = 0.33A and Im(y) = 3/Tk.

While ABS detachment already arises from elastic scatter-
ing [12], AR and Hartree corrections can strongly renorm-
alize 6,. Since the Kondo resonance floats with the Fermi
level and the ABS spectrum is detached from the con-
tinuum, the 4z periodic CPR in the Kondo limit should be
observable for T < d,.

ABS spectrum for small voltage V.—What will happen
to the 4z periodic Andreev spectrum in the Kondo limit
when a small bias voltage V is applied? For V < d, < A,
adiabatic Andreev levels still represent good dynamical
variables. Since the ABSs are removed from continuum
states by a spectral gap, the retarded and advanced sectors
of the Keldysh action decouple [49,50]. To investigate
whether the 4z periodicity survives in the nonequilibrium
case, we consider the phase dynamics, ¢(1) = 7= + 2V1, at
times where ¢(7) ~ z(mod2x), corresponding to zero-
energy crossings. The retarded sector can equivalently be
described [50] by the real-time action

§S= /d@f(t)[iaz — E4(t) (o, = &(0))]@(2).  (19)

where ® = (c,,c_)T contains the amplitudes for upper
and lower (v = +/—) Andreev branches, the Pauli matrix
o, acts in Andreev level space, and

1 —Re(y)A , .
E (t) ~—=— Asin(V1). 20
A == B Asin(vi) (20)
In the near-adiabatic regime, the ABS degeneracy at each
crossing is not lifted by the voltage, and the Andreev spectrum
remains 4z periodic. We find &(r) = 1Im(y)V cos(Vr) in
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Eq. (19), where Im(y) # 0 requires that particle-hole sym-
metry has been broken, e.g., by the voltage. The only effect
of £(r) then consists of an asymmetric distortion of the
v =+/— Andreev levels, cf. Egs. (19), (20), and inset
of Fig. 2,

vE, — u(1 —UE)E,. (21)

Since ¢ — —& at each subsequent crossing (¢ — ¢ + 2x),
Eq. (21) implies an asymmetric absorption and/or emission
spectrum near the ABS crossings. Importantly, this feature
allows one to experimentally distinguish the predicted 4z
Josephson effect from its topological counterpart in Majorana
junctions [37,38,40] as well as from other proposed realiza-
tions [46—48]. The real and imaginary parts of y can be
measured via the detachment gap 6, [Eq. (18)] in the
equilibrium Andreev spectrum and via the low-voltage
asymmetry ¢, see Eq. (21), respectively.

Conclusions.—In this work, we have presented a Fermi
liquid approach to the Kondo problem in a conventional s-
wave BCS superconductor with Tk > A. While we have
illustrated the theory for an Anderson dot between two
superconducting leads in the (near) equilibrium regime,
the Fermi liquid description also allows us to tackle many
other setups featuring an interplay of Kondo physics with
superconductivity.
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