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We present a Fermi liquid approach to superconducting Kondo problems applicable when the Kondo
temperature is large compared to the superconducting gap. To illustrate the theory, we study the current-phase
relation and the Andreev level spectrum for an Anderson impurity between two s-wave superconductors. In
the particle-hole symmetric Kondo limit, we find a 4π periodic Andreev spectrum. The 4π periodicity persists
under a small voltage bias which however causes an asymmetric distortion of Andreev levels. The latter
distinguishes the present 4π effect from the one in topological Majorana junctions.
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Introduction.—The interplay between superconductivity
and localized magnetic moments remains of central impor-
tance to modern condensed-matter physics. For instance,
spin-fluctuation mediated pairing is encountered in a broad
variety of unconventional superconducting materials [1,2].
Moreover, Yu-Shiba-Rusinov states induced by a magnetic
impurity in a superconductor [3–5] can be responsible for
Majorana bound states in magnetic atom chains deposited
on superconducting substrates [6,7]. A paradigmatic exam-
ple for superconducting Kondo problems is given by an
Anderson dot in the magnetic regime (where it can realize a
Kondo impurity) sandwiched between two conventional
s-wave BCS superconductors [8–23], with experimental
realizations available in nanoscale devices [24–30].
Numerical calculations [13,14,18,22] show that the low-
temperature physics is governed by the ratio TK=Δ,
where Δ is the superconducting gap and TK the Kondo
temperature (for Δ ¼ 0). While the so-called π-junction
regime with TK < Δ is accessible by perturbative renorm-
alization group (RG) methods [20,28], the complementary
0-junction regime with TK > Δ has so far withstood
analytical progress apart from an exact solution for
TK=Δ → ∞ [8] and different mean-field approximations
[9–12,15–17,19]. In more general terms, the Kondo effect
in a superconductor represents a long-standing open
theoretical problem.
We here formulate a Fermi liquid theory for the Kondo

effect in a superconductor which describes the regime
TK ≫ Δ in a systematic and controlled manner. For the
corresponding normal metal case, an elegant and asymp-
totically exact approach has been put forward by Nozières
[31], cf. also Refs. [1,32–34]. His key insight was that the
Kondo singlet formed by the impurity spin and the electron
screening cloud can only be polarized, but not broken,
near the strong-coupling fixed point. One then arrives at
a Fermi liquid description by expanding the energy-
dependent phase shifts for elastic quasiparticle scattering
at low energies and by including residual local quasiparticle

interactions [31–34]. We show below how those ideas can
be extended to the superconducting case where, in par-
ticular, Andreev reflection (AR) processes turn out to be of
key importance. Such processes can be fully captured by a
boundary condition accounting both for AR and elastic
scattering, cf. Eq. (7) below. For Δ ¼ 0, our approach
becomes equivalent to Nozières’ theory. It also reproduces
the TK=Δ → ∞ solution of Ref. [8]. For a Fermi liquid
approach covering the opposite limit TK=Δ → 0 in a
normal-superconductor junction, see Ref. [35].
We illustrate our theory for an Anderson impurity

between two s-wave BCS superconductors, see Fig. 1,
by studying the Josephson current-phase relation (CPR),
IðϕÞ, as well as the Andreev level dynamics under a small
bias voltage V. With minor modifications, our theory can
be adapted to a plethora of interesting related problems,
e.g., multiple Andreev reflection phenomena (so far studied
only within mean-field schemes [10,12]), setups involving
topological superconductors [36–40], or multi-terminal
devices [21,41]. In the particle-hole symmetric Kondo

(a)

(b)

FIG. 1. Schematic setup. (a) Semi-infinite left and right
(j ¼ L=R, blue or red) superconducting leads at x < 0=x > 0,
respectively, harbor one-dimensional (1D) right (þ) and left (−)
movers and are tunnel coupled (dashed lines) to an Anderson dot
(shaded circle) at x ¼ 0. (b) Unfolded representation with 1D
chiral fermions.
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limit of the Anderson model, we predict a 4π periodic
Andreev level spectrum at low temperature T ≪ Δ3=T2

K ,
with zero-energy level crossings at ϕ ¼ πðmod 2πÞ. Such a
periodicity is also expected for topological Josephson
junctions with Majorana states [37–40,42] (for experimen-
tal signatures, see Refs. [43–45]) and for other setups
[46–48]. We find that under a small bias voltage V, the 4π
periodicity persists. However, in contrast to all previously
studied 4π periodic setups, the absorption and/or emission
spectrum near the zero-energy crossings becomes asym-
metric. This fact allows for experimental tests of the
underlying mechanism.
Model.—We start with an Anderson dot tunnel-coupled

to left and right superconducting leads (j ¼ L=R), see
Fig. 1(a). Writing H ¼ Hd þHt þHleads with Hd ¼
εdðn↑ þ n↓Þ þUn↑n↓, where nσ ¼ d†σdσ for dot fermions
dσ, we have an interacting (U > 0) dot level at energy
εd. For simplicity taking identical dot-lead tunnel
couplings (t0), the point-like tunneling Hamiltonian is
Ht ¼ t0

P
σd

†
σbσð0Þ þ H:c:, with symmetric combinations

bσðxÞ of 1D left and right lead fermion operators, cf. Eq. (2)
below. Finally, Hleads describes s-wave BCS superconduc-
tor leads [49]. Each semi-infinite lead supports right and

left movers, ψ ð�Þ
j;σ ðxÞ ∼ e�ikFx. In the equivalent unfolded

representation in Fig. 1(b), we have infinite chiral leads
containing only left- and right-moving field operators

ψ j;σðxÞ for lead j ¼ L=R, respectively, ψ ð�Þ
L;σ ðx < 0Þ ¼

e�ikFxψL;σð∓ xÞ and ψ ð�Þ
R;σ ðx > 0Þ ¼ e�ikFxψR;σð�xÞ. To

simplify notation, we take the same absolute value Δ of
the superconducting gap on both sides and put ℏ ¼ e ¼
vF ¼ kB ¼ 1 (the normal density of states is then just 1=π),
resulting in

Hleads ¼
X

j¼L=R¼�

Z
∞

−∞
dx

� X

σ¼↑;↓

ψ†
j;σð�i∂xÞψ j;σ

þ Δðe∓iϕ=2ψ j;↓ðxÞψ j;↑ð−xÞ þ H:c:Þ
�
; ð1Þ

where ϕ is the phase difference. Next, we switch to the
linear combinations

�
aσðxÞ
bσðxÞ

�
¼ 1

ffiffiffi
2

p ½ψL;σð−xÞ ∓ ψR;σðxÞ�; ð2Þ

representing incoming (outgoing) fermion states for x < 0
(x > 0). The a modes obey open boundary conditions
corresponding to aσð0þÞ ¼ aσð0−Þ, which for t0 ¼ 0 also
apply to b modes.
In the magnetic regime, U ≫ maxðΔ; jt0j2Þ and

−U < εd < 0, the impurity corresponds to a spin-1=2
operator S, with the particle-hole symmetric Kondo
limit at εd ¼ −U=2. A Schrieffer-Wolff transformation
yields H → Hleads þHK , where HK contains a potential

scattering term (for εd ≠ −U=2) and an exchange term
with coupling J > 0 between S and the spin density of b
fermions at x ¼ 0 [1]. Importantly, a modes always decou-
ple from the impurity and thus can be integrated out exactly.
Using the imaginary-time functional integral approach [49],
b modes are then governed by the action Sb þ

R
dτHKðτÞ,

where Sb ¼ −
P

k;ωΨ̃
†ðk;ωÞG−1ðk;ωÞΨ̃ðk;ωÞ with fer-

mion Matsubara frequencies ω and the Nambu spinor

Ψðx; τÞ ¼
� b↑ðx; τÞ
b†↓ð−x; τÞ

�
∼
X

k;ω

eiðkx−ωτÞΨ̃ðk;ωÞ: ð3Þ

Here and below, Ψ̃ðωÞ refers to the frequency representation
of a time-dependent spinor ΨðτÞ. After taking into account
the pairing-induced bulk coupling between a and b fer-
mions, the free (t0 ¼ 0) Green’s function (GF) appearing in
Sb is given by [cf. Eq. (1)],

Gðk;ωÞ ¼ −
iωþ kτz þ Δ cosðϕ=2Þτx

k2 þ ω2 þ Δ2
; ð4Þ

where Pauli matrices τx;z act in Nambu space.
Weak-coupling regime.—At high energy scales, the

dynamics is restricted to the Hilbert subspace respecting
open boundary conditions. Integrating also over the bulk
bσðx ≠ 0Þmodes, we obtain Sb¼−

P
ωΨ̃

†ðωÞG−1
0 ðωÞΨ̃ðωÞ

with ΨðτÞ ¼ Ψð0; τÞ and

G0ðωÞ ¼
Z

dk
2π

Gðk;ωÞ ¼ −
iωþ Δ cosðϕ=2Þτx

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ Δ2

p : ð5Þ

Standard energy-shell integration [49] then yields the one-
loop RG equations

dJ
dl

¼ J2

π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p ;
dQ
dl

¼ −
3

4π

δ cosðϕ=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p J2; ð6Þ

where δðlÞ ¼ Δ=DðlÞ. As the effective bandwidth
DðlÞ ¼ e−lD decreases with increasing RG flow para-
meter l, a local pairing term, HAR ¼ Qb↓ð0Þb↑ð0Þ þ H:c:,
is generated by AR processes. In fact, for ϕ ≠ π (mod 2π),
the growing exchange coupling JðlÞ drives QðlÞ toward
strong coupling, resulting in Kondo-enhanced AR [20,28].
Note that QðlÞ ∼ cosðϕ=2Þ throughout the flow. However,
the RG approach breaks down at energies below
TK ≃De−π=J, where one enters the strong-coupling regime.
Strong-coupling theory.—In the deep Kondo regime, the

impurity spin is almost perfectly screened by the leads. To
implement the Fermi liquid approach for the normal case, it
is convenient to employ a scattering state formalism where
the leading effects due to the polarizable Kondo singlet
come from energy-dependent phase shifts and residual
interaction corrections [31–34]. For the superconducting
case, we also need to include AR processes. This is
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achieved below by describing both AR and elastic scatter-
ing in a unified manner through a simple yet general
boundary condition. To that end, by performing a Wick
rotation, iω → E, with energy E relative to the chemical
potential μ, we define Ψ̃�ðEÞ ¼ Ψ̃ðx ¼ 0�; EÞ from the
Nambu spinor (3) taken at x ¼ 0�. Arbitrary elastic
scattering and AR processes are then captured by the
boundary condition

Ψ̃þðEÞ ¼ e2iη̂ðEÞΨ̃−ðEÞ; η̂ðEÞ ¼
�

η↑ðEÞ ηaðEÞ
−η�aðEÞ η↓ð−EÞ

�
;

ð7Þ

where the Nambu matrix η̂ðEÞ has the most general form
allowed by Hermiticity of the self-energy Σ̂ðEÞ in Eq. (8)
below. While the real functions η↑;↓ðEÞ are energy-
dependent phase shifts precisely as in the normal case,
the complex-valued function ηaðEÞ describes AR.
Next, Eq. (7) is linked to the retarded response of bulk

modes, Ψ̃�ðEÞ ¼
P

ke
ik0�GRðk; EÞΨ̃ðEÞ, to an effective

boundary field, Ψ̃ðEÞ, living at x ¼ 0. Using the retarded
GFs GRðk; EÞ and GR

0 ðEÞ obtained by Wick rotation from
Eqs. (4) and (5), respectively, we find Ψ̃�ðEÞ ¼ ½GR

0 ðEÞ ∓
ði=2Þτz�Ψ̃ðEÞ. Here, the τz term originates from the
respective τz term in Eq. (4). One can thereby write
Eq. (7) as equation of motion for the boundary spinor,

½GR
0 ðEÞ þ Σ̂ðEÞ�Ψ̃ðEÞ ¼ 0; Σ̂ðEÞ ¼ 1

2
cot½η̂ðEÞ�τz: ð8Þ

Finally passing back to imaginary time and rescaling
ΨðτÞ ¼ ð1= ffiffiffi

2
p Þ½b↑ðτÞ; b†↓ðτÞ�T , the strong-coupling action

is given by [cf. Eqs. (5) and (8)]

SSC½Ψ� ¼ −
X

ω

Ψ̃†ðωÞG−1ðωÞΨ̃ðωÞ þ SI;

G−1ðωÞ ¼ G−1
0 ðωÞ − cot½η̂ðiωÞ�τz;

G−1
0 ðωÞ ¼ −2G0ðωÞ; ð9Þ

while SI describes residual interaction corrections addressed
below.We emphasize that our self-energy formulation of AR
and elastic scattering processes in Eq. (9) is completely
general.
In order to arrive at a low-energy Fermi liquid theory,

we now expand η̂ðEÞ in powers of jEj=TK ≪ 1 and
Δ=TK ≪ 1. Using the spin symmetry of the problem
and noting that conventional even-frequency pairing gen-
erated from Eq. (1) implies ηað−EÞ ¼ ηaðEÞ, we find

η↑ðEÞ ¼ η↓ðEÞ ¼ ηF þ α1Eþ α2E2 þ � � � ;
ηaðEÞ ¼ Δðβ1 þ β3E2 þ � � �Þ; ð10Þ

where ηF is the quasiparticle phase shift at the Fermi energy
for Δ ¼ 0. The Fermi liquid parameters αn and βn scale as
1=Tn

K , where the αn determine the elastic scattering phase
shifts [31,34] and the complex-valued βn depend on the
phase difference ϕ (see below). Keeping all terms up to
order 1=T2

K, and using the renormalized parameters
α̃n ¼ αn= sin2 ηF and β̃n ¼ βn= sin2 ηF, we arrive at

G−1ðωÞ ¼ G−1
0 ðωÞ −

�
λðωÞ − iα̃1ω β̃1Δ

β̃�1Δ −λðωÞ − iα̃1ω

�
;

λðωÞ ¼ cotηF

�
1 −

α21ω
2 þ jβ1j2Δ2

sin2ηF

�
þ α̃2ω

2: ð11Þ

Further simplifications arise in the Kondo limit, where
particle-hole symmetry (which is not broken by pairing
terms) imposes the condition τxe2iη̂ðEÞτx ¼ e−2iη̂ðEÞ [50],
resulting in ηF ¼ π=2, α2 ¼ 0, and β1 ¼ β�1. In the Kondo
limit, we thus have λðωÞ ¼ 0 in Eq. (11).
Residual interaction processes.—We now turn to SI in

Eq. (9). Keeping all terms up to order 1=T2
K, this action

contribution has the general form

SI ¼
1

2

X

σ¼↑;↓

Z
dτb†−σb−σb

†
σðũ1 − ũ2∂τÞbσ; ð12Þ

with expansion parameters ũn ∼ 1=Tn
K (where ũ1 ≥ 0).

Defining normal ordering and averages h� � �i0 with respect
to the BCS ground state for G0ðωÞ, cf. Eq. (9), it is
convenient to express Eq. (12) by virtue of Wick’s theorem
as SI ¼ hSIi0 þ S̃I þ SHI , where S̃I is the normal-ordered
form of Eq. (12) and SHI represents Hartree terms which can
be accounted for via the η̂ðEÞ expansion in Eq. (10). Up to
order 1=T2

K, with un ¼ ũn sin2 ηF, we find

ησðEÞ ¼ ηF þ α1Eþ α2E2 − ðu1 þ u2EÞδN−σ;

ηaðEÞ ¼ β1Δþ u1δQ; ð13Þ

where δNσ and δQ are self-consistent Hartree parameters
for local density and pairing fluctuations, respectively.
Again invoking spin symmetry, δN↑ ¼ δN↓, Eq. (13)
implies that Hartree terms can indeed be included by
renormalizing αn and βn. We assume henceforth that this
renormalization has already been carried out. Moreover,
since the Kondo singularity is tied to the Fermi level, the
phase shifts ησðEÞ must be independent of the chemical
potential μ [31,34]. This fact implies that one can derive
relations between Fermi liquid parameters without having
to specify δNσ or δQ [31,34]. In particular, in the Kondo
limit, ∂μηF ¼ 0 and α2 ¼ u2 ¼ 0 imply the well-known
identity u1 ¼ πα1 [31] and ∂μα1 ¼ 0.
Current-phase relation.—The CPR follows as a phase

derivative of the free energy,

PHYSICAL REVIEW LETTERS 121, 207701 (2018)

207701-3



IðϕÞ ¼ 2∂ϕF ¼ IAðϕÞ þ Ið1Þint ðϕÞ þ Ið2Þint ðϕÞ; ð14Þ

where IAðϕÞ ¼ −2T
P

ω∂ϕ ln detG−1ðωÞ is the Andreev
bound state (ABS) contribution, see Eq. (11). In particular,
the ABS spectrum follows by solving det½G−1ð−iEÞ� ¼ 0
for subgap energies, jEj < Δ. Keeping terms up to order
1=TK , where λð−iEÞ ¼ λ ¼ cotηF [cf. Eq. (11)], this
condition reads

E2

Δ2
¼ j cosðϕ=2Þ − β̃1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − E2

p
j2 þ λ2

ð1þ α̃1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − E2

p
Þ2 þ λ2

: ð15Þ

In the Kondo limit (with λ ¼ 0), Eq. (15) holds up to
order 1=T2

K.
The leading interaction contribution to the CPR, see

Eq. (14), follows from hSIi0 [50],

Ið1Þint ðϕÞ ¼ δIc sinϕ; δIc ≃ −
ũ1Δ2

4π2
ln2ðTK=ΔÞ: ð16Þ

As expected in the presence of repulsive quasiparticle
interactions, we obtain a decrease of the critical current,
δIc < 0, where jδIcj ∼ ðΔ2=TKÞln2ðTK=ΔÞ contains a log-
arithmic enhancement factor. Finally, Ið2Þint describes higher-
order interaction corrections to the CPR due to S̃I . To order
1=T2

K , we obtain [50]

Ið2Þint ðϕÞ ≈ ũ21Δ3

�
sinϕþ 1

2
sinð2ϕÞ

�
; ð17Þ

where the sinð2ϕÞ term describes coherent tunneling
processes involving two Cooper pairs.
Let us then turn to the dominant ABS contribution, see

Eq. (15), where the ϕ dependence of the AR coupling β̃1
follows from Eq. (6), β̃1ðϕÞ ¼ γ cosðϕ=2Þ, with constant
γ ∼ 1=TK . (i) For TK=Δ → ∞, all Fermi liquid parameters
and thus also the interaction corrections (16) and (17) can
be dropped. Solutions to Eq. (15) are then given by E ¼
�Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T sin2ðϕ=2Þ

p
with the junction transparency

T ¼ sin2 ηF ¼ 1=ð1þ λ2Þ. We thus readily recover the
results of Ref. [8]. (ii) Including 1=TK corrections, see
Fig. 2, Eq. (15) predicts a 4π periodic ABS spectrum in the
Kondo limit (λ ¼ 0), with zero-energy ABS crossings at
ϕ ¼ πðmod 2πÞ). For λ ≠ 0, we instead have avoided
crossings with gap Eg ≃ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − T

p
Δ, and thus obtain a

conventional 2π periodic spectrum. (iii) Fermi liquid
corrections imply a detachment of ABSs from quasiparticle
continuum states at ϕ ¼ 0ðmod 2πÞ. The detachment gap,
δA ¼ Δ − EAð0Þ, follows from Eq. (15) as

δA ¼ 2sin4ðηFÞΔ3½α̃1 þ ReðγÞ�2 ∼ Δ3

T2
K
: ð18Þ

While ABS detachment already arises from elastic scatter-
ing [12], AR and Hartree corrections can strongly renorm-
alize δA. Since the Kondo resonance floats with the Fermi
level and the ABS spectrum is detached from the con-
tinuum, the 4π periodic CPR in the Kondo limit should be
observable for T ≪ δA.
ABS spectrum for small voltage V.—What will happen

to the 4π periodic Andreev spectrum in the Kondo limit
when a small bias voltage V is applied? For V ≪ δA ≪ Δ,
adiabatic Andreev levels still represent good dynamical
variables. Since the ABSs are removed from continuum
states by a spectral gap, the retarded and advanced sectors
of the Keldysh action decouple [49,50]. To investigate
whether the 4π periodicity survives in the nonequilibrium
case, we consider the phase dynamics, ϕðtÞ ¼ π þ 2Vt, at
times where ϕðtÞ ≈ πðmod 2πÞ, corresponding to zero-
energy crossings. The retarded sector can equivalently be
described [50] by the real-time action

S ¼
Z

dtΦ†ðtÞ½i∂t − EAðtÞðσz − ξðtÞÞ�ΦðtÞ; ð19Þ

where Φ ¼ ðcþ; c−ÞT contains the amplitudes for upper
and lower (ν ¼ þ=−) Andreev branches, the Pauli matrix
σz acts in Andreev level space, and

EAðtÞ ≃
1 − ReðγÞΔ
1þ α1Δ

Δ sinðVtÞ: ð20Þ

In the near-adiabatic regime, the ABS degeneracy at each
crossing is not lifted by thevoltage, and theAndreev spectrum
remains 4π periodic. We find ξðtÞ ¼ 1

2
ImðγÞV cosðVtÞ in

FIG. 2. ABS spectrum vs phase ϕ. Main panel: Black dotted
curves show the particle-hole symmetric limit with TK=Δ → ∞
[8]. Blue and red solid curves depict 4π periodic Andreev levels
for TK=Δ ¼ 5, λ ¼ 0, and α1 ¼ γ ¼ 1=TK . Green dashed
curves illustrate the gap Eg formed away from particle-hole
symmetry (λ ¼ 0.2), leading to 2π periodicity. Inset: Asymmetry
of 4π-periodic adiabatic Andreev levels near the crossing at
ϕ ¼ π with voltage V ¼ 0.33Δ and ImðγÞ ¼ 3=TK .
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Eq. (19), where ImðγÞ ≠ 0 requires that particle-hole sym-
metry has been broken, e.g., by the voltage. The only effect
of ξðtÞ then consists of an asymmetric distortion of the
ν ¼ þ=− Andreev levels, cf. Eqs. (19), (20), and inset
of Fig. 2,

νEA → νð1 − νξÞEA: ð21Þ

Since ξ → −ξ at each subsequent crossing (ϕ → ϕþ 2π),
Eq. (21) implies an asymmetric absorption and/or emission
spectrum near the ABS crossings. Importantly, this feature
allows one to experimentally distinguish the predicted 4π
Josephson effect from its topological counterpart inMajorana
junctions [37,38,40] as well as from other proposed realiza-
tions [46–48]. The real and imaginary parts of γ can be
measured via the detachment gap δA [Eq. (18)] in the
equilibrium Andreev spectrum and via the low-voltage
asymmetry ξ, see Eq. (21), respectively.
Conclusions.—In this work, we have presented a Fermi

liquid approach to the Kondo problem in a conventional s-
wave BCS superconductor with TK ≫ Δ. While we have
illustrated the theory for an Anderson dot between two
superconducting leads in the (near) equilibrium regime,
the Fermi liquid description also allows us to tackle many
other setups featuring an interplay of Kondo physics with
superconductivity.
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