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We find that the recently developed self-consistent and appropriately normed meta-generalized gradient
approximation, which has been found to provide highly accurate results for many materials, is, however,
not able to describe the stability and properties of phases of Fe important for steel. This is due to an
overestimated tendency toward magnetism and exaggeration of magnetic energies, which we also find in
other transition metals.
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Density functional theory (DFT) calculations [1] are a
central tool in condensed matter physics, chemistry, and
materials science. This utility is the result of the availability
of sufficient accuracy in tractable approximate functionals.
This enables predictive calculations of properties of interest
and elucidations of underlying mechanisms of physical
behavior. Therefore, the development of new practical
functionals that improve the accuracy, and therefore the
range of behaviors and materials that can be studied with
DFT calculations, is of great interest.
Steel is arguably the most important industrial material.

Annual production exceeds 1.7 billion metric tons. Steels
are complex materials whose properties are controlled by
microstructure. These microstructures are what provides
steel with desirable combinations of ductility, toughness,
and tensile strength. These microstructures come from
balances between different phases mainly in the Fe-C phase
diagram [2]. Although the ground state of Fe is body-
centered cubic (bcc), an equilibrium face-centered cubic
(fcc) phase exists between 1185 and 1667 K. Carbon has a
much higher solubility in this fcc phase (up to 2.14 wt% and
0.76 wt% at the eutectoid) than in the bcc phase (maximum
of 0.022 wt%), leading to an easily accessed eutectoid point
in the phase diagram (at 1000 K and 0.77 wt%C). Cooling
leads to nanoscale and microscale precipitation of cementite
(Fe3C, a very hard phase), in a bcc Fe matrix, as well as
nonequilibrium austenite (fcc Fe with C) and sometimes
other phases associated with alloying elements, to form
microstructures such as perlite, martensite, and bainite.
These microstructures, sometimes modified by mechanical
deformation steps, are key to the properties of steel. First
principles–based understanding of steel requires the ability
to model these different phases and their relationships, most
importantly the relationship between the ground state bcc
structure (ferrite) and the fcc structure (austenite).
This has posed ongoing challenges to density functional

calculations. Early on it was found that the otherwise

highly successful local (spin) density approximation
(LDA), cannot describe Fe. In particular, it was shown
that the LDA predicts a nonmagnetic fcc ground state for
Fe, with the ferromagnetic bcc structure lying higher in
energy [3]. The LDA does, however, provide an accurate
value of the spin magnetization of Fe, when constrained to
its experimental bcc structure.
An important step was the development of generalized

gradient approximation (GGA) functionals [4–7], based
on knowledge of the behavior of the exchange correlation
hole in inhomogeneous electron gasses [8,9]. In addition to
correctly predicting the bcc ground state and spin mag-
netization of Fe [6,10–14], these GGA functionals greatly
improved the energetics of a wide variety of molecules and
solids. This was a remarkable achievement, especially
considering that these GGA functionals were based on
constraints and scaling for the electron gas and do not fit to
known materials properties.
Therefore, it is very reasonable to assume that func-

tionals that incorporate additional known exact properties
of the inhomogeneous electron gas will at least on average
improve the description of atoms, molecules, and solids.
A significant recent development along these lines was the
construction of a strongly constrained and appropriately
normed (SCAN) functional [15]. This is a semilocal meta-
GGA functional. Meta-GGA functionals are more conven-
ient for calculations than hybrid functionals [16,17],
especially in extended systems.
The SCAN functional satisfies exact constraints,

including importantly the Lieb-Oxford lower bound for
the exchange energy [18,19], also important for the
construction of the earlier GGA functionals, as well as
scaling relations [20]. It is also designed to revert to the
LDA for the uniform electron gas (a norm) and also
uses the hydrogen atom as a norm for the exchange.
This is important in regard to self-interaction errors. It is
designed to be accurate both for the slowly varying
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electron gas and for atoms, which is not possible in GGA
functionals [21].
Tests done to date generally confirm the expectation that

SCAN provides highly accurate results for many materials
[15,22–25], as might be expected from the many con-
straints that it satisfies [26]. However, there is at least one
indication that SCAN may not improve the already gen-
erally good description of magnetism in some metallic
ferromagnets. Isaacs and coworkers [25] reported that the
magnetization of Fe, Co, and Ni is enhanced by 0.42, 0.13,
and 0.1 μB, respectively, relative to the widely used GGA
functional of Perdew, Burke, and Ernzerhof (PBE) [7].
They observed that this degrades agreement with experi-
ment for Fe and Ni. Ekholm and coworkers also performed
calculations for Fe, Co, and Ni, and found that the moments
were enhanced relative to experiment, which they ascribed
to a downshift of the 3d states [27].
We did calculations with the LDA, the PBE GGA, and

the SCAN functional using two different methods, specifi-
cally the projector augmented wave (PAW) method [28] as
implemented in the VASP code [29], and the all electron
general potential linearized augmented plane wave
(LAPW) method [30], as implemented in the WIEN2K code
[31]. The VASP code includes a self-consistent calculation
with the SCAN functional, except that it relies on PAW
potentials constructed for the PBE GGA, which is an
approximation. The LAPW method as implemented in
WIEN2K is an all electron method that does not rely on
pseudopotentials. However, at present, SCAN calculations
with this method must be done non-self-consistently, in
particular, calculating the energy using the SCAN func-
tional, but based on the density from a semilocal calcu-
lation. We used the PBE GGA with the constrained DFT
[32], specifically the fixed spin moment (FSM) procedure
[33–35], to generate the spin densities for calculating the
SCAN total energies.
This procedure involves solving the Kohn-Sham equa-

tions with a constraint that the integrated spin density (the
spin moment) equals a specified value. This is achieved
by imposing the constraint via a difference in spin-up and
spin-down Fermi levels, equivalent to a magnetic field
operating on spin only [36]. We used dense grids of discrete
moments to obtain the plots shown here. This allows us also
to calculate the total energy as a function of the constrained
moment for ferromagnetic materials and provides insights
into the problems in the treatment of magnetic transition
metals with SCAN. We carefully converged the calcula-
tions, using large basis sets, and dense convergence tested
k-point grids for all materials. We compared the results
from the two codes and found very similar results, which
support the different approximations involved. We also did
self-consistent calculations including spin orbit for the PBE
and LDA functionals to quantify the effect of spin orbit,
which could not be applied in FSM calculations for the
SCAN functional. These show that the effects of spin orbit

are small on the scale of the differences between the
functionals and cannot resolve the discrepancies.
The measured saturation magnetizations of Fe, Co, and

Ni are 2.22, 1.72, and 0.62 μB, on a per atom basis [37,38].
These include both spin and orbital contributions. The
orbital moments of Fe and Co from x-ray magnetic circular
dichroism experiments are 0.09 and 0.15 μB, per atom [39],
whereas the experimental value for Ni is 0.05 μB [40]. Our
spin (msp) and orbital (morb) moments at the experimental
lattice parameters from LAPW calculations with the PBE
functional including spin orbit are msp ¼ 2.22 μB and
morb ¼ 0.04 μB for Fe, msp ¼ 1.62 μB and morb ¼ 0.08 μB
for Co, andmsp ¼ 0.63 μB andmorb ¼ 0.05 μB for Ni, i.e.,
spin moments very close to the experimental values, and
orbital moments are small and underestimated for Fe and
Co, as in prior calculations [41]. In our calculations without
spin orbit, the PBE spin moments are msp ¼ 2.22 μB,
msp ¼ 1.62 μB, and msp ¼ 0.63 μB, for Fe, Co, and Ni,
respectively, which are the same as those with spin orbit to
the quoted precision. Thus, spin orbit does not have a
significant effect on the calculated spin moments for these
3d ferromagnets. It is also to be noted that any enhancement
of the spin moment over the PBE values will degrade
agreement with experiment, including the case of Co.
Figure 1 shows our results for the magnetic energy of bcc

Fe at its experimental lattice parameter, in comparison with
the energy of non-spin-polarized fcc Fe. Numerical values
and magnetic moments are given in Table I. As seen, the

FIG. 1. FSM energy for bcc Fe at the experimental lattice
constant of 2.86 Å, on a per atom basis. The dashed lines are the
energies of non-spin-polarized fcc Fe, at the optimized lattice
parameter for the different functionals. The small dots indicate
the minimum energy points.
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SCAN functional yields dramatically different results from
the LDA and PBE functionals. Energy plays a central role
in density functional theory. As mentioned, the LDA fails
for Fe, predicting that the fcc structure has lower energy,
in particular by 0.165 eV. The PBE functional yields the
correct ordering, with an energy difference of 0.156 eV,
considering a nonmagnetic fcc structure. The SCAN func-
tional predicts a much more stable bcc structure, with an
overestimated spin moment of 2.63 μB=atom and an fcc-
bcc energy difference of 0.593 eV. This is due to a much
larger magnetic energy. Self-consistent calculations using
VASP yield similar numbers, specifically a spin moment of
2.65 μB and an energy difference of 0.579 eV, for SCAN.
Although these numbers do not include the magnetic
enthalpy of fcc Fe, it is clear that SCAN predicts an overly
stable ferromagnetic state for bcc Fe. The experimental
enthalpy difference between bcc and fcc Fe at 1185 K from
assessed calorimetric measurements is 0.009 eV=atom,
whereras the low temperature energy difference from
thermodynamic models based on experimental data is
0.06 eV=atom [42].
Figure 2 shows the FSM energy as functions of lattice

parameter and moment for bcc and fcc Fe. In accord with
older work [3,14], in addition to its failure to predict the
correct ground state, the LDA strongly underestimates the
lattice parameter of magnetic bcc Fe, whereas the PBE
GGA give values in closer agreement with experimental
data. The SCAN functional gives a lattice parameter
similar to PBE for the bcc structure. The SCAN functional
predicts very different behavior for the fcc phase. When
constrained to ferromagnetism, the LDA and PBE predict
either no magnetism or a low moment state. The SCAN
functional predicts a high moment state. Although high
moment ferromagnetism does not preclude a still lower
energy ground state with antiferromagnetism, it is incom-
patible with a weak low moment antiferromagnetic state,
due to the large magnetic energy associated with the high
moment state.

Experimental information on the magnetism of free fcc Fe
is limited by the fact that it is not a stable low temperature
phase. However, fcc Fe films grown epitaxially on Cu are
paramagnetic at ambient temperature, and become antiferro-
magnetic at low temperature with TN ∼ 65 K [43], similar to
the behavior of small fcc Fe precipitates in an fcc Cu matrix
[44]. According to neutron diffraction measurements, these
have a smallmoment of∼0.5 μB per Fe [45]. Based on this, as
well as the properties of nonferromagnetic austenitic steels
[44], thermodynamic modeling, and extrapolation of alloy
data [42,46], it is thought that fcc Fe is an itinerant weak
antiferromagnet with a Neel temperature below 70 K and
a relatively small contribution of magnetism to the energy.
DFT studies have indicted that there is an additional high
volume high spin ferromagnetic state with higher energy,
and this has been discussed in connection with the stability
of the fcc phase between 1185 and 1667 K [14,42].
We also did self-consistent calculations with VASP for the

energy and moments of a hypothetical antiferromagnetic
bcc Fe, where the moments of the two Fe atoms in the
conventional cubic cell are oppositely aligned. We find that
with the PBE functional the moments as measured by the
spin density around Fe sites, is reduced from 2.25 μB in
ferromagnetic case (note there is a small negative interstitial
spin moment of ∼ − 0.03 μB) to 1.71 μB. In contrast, the
SCAN result for the antiferromagnetic case of 2.66 μB is
almost exactly the same as for the ferromagnetic case, i.e.,
2.65 μB. PBE predicts intermediate itinerant/local moment
behavior for bcc Fe, whereas SCAN predicts that Fe is in
the local moment limit, in general disagreement with
experiment [47].
Thus, the known data are consistent with good agree-

ment between the predictions of the PBE functional
and experiment. Importantly, it is inconsistent with the

TABLE I. Calculated properties of Fe aexp and acalc are the
experimental and calculated lattice parameters of bcc Fe, re-
spectively. The fcc-bcc energy difference ΔEfcc-bcc is as in Fig. 1.
ΔEmag is the magnetic energy from the difference between non-
spin-polarized and ferromagnetic states..

LDA PBE SCAN Expt.

a (Å) 2.76 2.84 2.85 2.86
mspðaexpÞ (μB) 2.21 2.21 2.63 2.13
mspðacalcÞ (μB) 2.00 2.16 2.60 � � �
morbðaexpÞ (μB) 0.05 0.04 � � � 0.09
ΔEmagðaexpÞ (meV) 448 566 1117 � � �
ΔEmagðacalcÞ (meV) 317 529 1078 � � �
ΔEfcc-bcc (meV) −165 156 593 60a

aEnergies are per atom. Estimate from extrapolated
thermodynamic data (see text)

FIG. 2. LDA, PBE, and SCAN FSM energy in meV/atom for
bcc and fcc Fe as functions of lattice parameter and spin moment.

PHYSICAL REVIEW LETTERS 121, 207201 (2018)

207201-3



predictions of the SCAN functional. Specifically, the
results point to severe problems in the SCAN predictions
for magnetic energies and moments in Fe. It is notable that
the differences in magnetic energies between SCAN and
the LDA and PBE functionals are much larger than the
differences between predictions of those two functionals.
Considering the very different predictions of SCAN as

compared to standard functionals for the magnetic proper-
ties of Fe, it is of interest to investigate whether this is
general problem, or if it is restricted to Fe. Accordingly, we
performed fixed spin moment and self-consistent calcu-
lations for other materials. We start with cementite (Fe3C),
which is ferromagnetic and a key ingredient in many steels.
The calculated spin magnetization per three iron atom
formula unit is 5.75 μB with the PBE functional and
6.87 μB with SCAN (based on self-consistent VASP calcu-
lations at the experimental lattice parameters; very similar
values were obtained from LAPW FSM calculations). This
compares with a total room temperature saturation mag-
netization of 5.3 μB from experiment [48], indicating again
a substantial error with SCAN.
Figure 3 and Table II give the results of FSM calculations

for other elements with the experimental structures and
lattice parameters. Hexagonal close packed Co and fcc Ni
are the other ferromagnetic 3d elements. Ni is regarded as a
prototypical itinerant ferromagnet. SCAN gives very much
larger magnetic energies for these two elements as com-
pared with PBE and LDA. We also find enhanced spin
moments with SCAN, and similar to Fe we find significant
degradation with respect to experiment for both Ni and Co.
The calculated spin moments with the SCAN functional are
1.80 μB for Co and 0.77 μB for Ni. bcc V and fcc Pd are

both paramagnetic metals down to 0 K according to
experiment. Pd is very close to ferromagnetism, and for
this reason exhibits strong spin fluctuations that have been
implicated in preventing a superconducting state in this
element [49,50]. Pd is a particularly interesting test for
density functionals, because it is incorrectly predicted to be
ferromagnetic by some hybrid functionals [51], while
showing borderline ferromagnetic behavior with standard
GGAs [51,52]. V is not as close to ferromagnetism and is a
superconductor at low temperature [53]. Our PBE and LDA
results are consistent with these experimental facts. SCAN
on the other hand predicts an effectively infinite suscep-
tibility for V and a low moment ferromagnetic state for Pd.
Thus, qualitatively similar to Fe, SCAN strongly over-
estimates the magnetic tendencies of V, Co, Ni, and Pd.
The above results point to a surprising degradation of the

predictions of SCAN relative to PBE in describing magnet-
ism in transition metals and suggest caution in the use of
this functional for predicting magnetic properties of mate-
rials. This may perhaps be due to the challenge of obtaining
the itinerant physics of systems like Fe with multiple
partially occupied d-orbitals, and at the same time repro-
ducing correct physics of atoms, including cancelation of
self-interaction. In any case, we hope that the above results
may motivate further work to develop improved meta-GGA
functionals, particularly functionals that satisfy known
constraints, from the inhomogeneous electron gas, includ-
ing the many constraints satisfied by SCAN, and possibly
additional constraints, and at the same time predict accurate
magnetic properties of metals.
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