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We propose that the chiral anomaly of Weyl superconductors gives rise to negative thermal magneto-
resistivity induced by emergent magnetic fields, which are generated by vortex textures of order parameters
or lattice strain. We establish this scenario by combining the argument based on Berry curvatures and the
quasiclassical theory of the Eilenberger equation with quantum corrections arising from inhomogeneous
structures. It is found that the chiral anomaly contribution of the thermal conductivity exhibits characteristic
temperature dependence, which can be a smoking-gun signature of this effect.
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Introduction.—In Weyl semimetals and Weyl supercon-
ductors, low-energy excitations behave as Weyl fermions
characterized by nonzero Berry curvatures in momentum
space, which stem from monopole charges at Weyl points
[1–9]. This feature results in various intriguing electro-
magnetic responses associated with a chiral anomaly. For
instance, in the case of Weyl semimetals, chiral anomaly
gives rise to the anomalous Hall effect, chiral magnetic
effect, and negative magnetoresistivity [10–17], some of
which have already been experimentally verified in real
materials [18–24]. For Weyl superconductors, however,
chiral anomaly phenomena cannot be realized by simply
applying electromagnetic fields, because Weyl-Bogoliubov
quasiparticles do not carry definite charges. Instead, chiral
anomaly in the superconducting state can be induced by
emergent electromagnetic fields which are generated by
spatially inhomogeneous textures of order parameters, or
lattice strain [25–40].
In this Letter, we demonstrate that negative magneto-

resistivity of longitudinal thermal currents induced by an
emergent magnetic field can be a signature of chiral
anomaly; i.e., thermal conductivity of Weyl quasiparticles
increases as the emergent magnetic field parallel to the
temperature gradient increases, even when pair-breaking
effects due to magnetic fields are negligibly small. We
examine two scenarios for realizing emergent magnetic
fields. One is that induced by vortex textures in the mixed
state, and the other one is a chiral magnetic field arising from
lattice strain [26,39,40]. We establish the abovementioned
result by combining the argument based on the semiclassical
equation of motion with Berry curvatures characterizing
Weyl fermions and microscopic analysis using the quasi-
classical theory of the Keldysh Green function. Our finding
is relevant to putative Weyl superconductors such as multi-
layer systems [9] and uranium-based systems, URu2Si2,
UPt3, UCoGe, U1−xThxBe13 [41–53].

Semiclassical argument for thermal transport with Berry
curvature.—We, first, present a semiclassical argument
for thermal transport. This approach is useful for qualitative
understanding of chiral anomaly effects. We consider a
paradigmatic model of Weyl superconductors which
describes a three-dimensional chiral px þ ipy pairing state
of spinless fermions, though our basic idea can be gener-
alized to any Weyl superconductors. The superconducting
gap function for homogeneous cases is given by Δk ¼
Δðkx − ikyÞ=kF. In this system, low-energy excitations
from point nodes of the superconducting gap at k ¼
ð0; 0;�kFÞ behave as Weyl fermions. The model
Hamiltonian for low-energy Weyl quasiparticles with the
monopole charge s ¼ �1 in the case with spatial inhomo-
geneity is given by

Hsðk; rÞ ¼ seμaVa
bτ

bðkμ − sk0μÞ; ð1Þ

where Va
b ¼ diag½ðΔ=kFÞ; ðΔ=kFÞ; vF�, with vF the Fermi

velocity and τa the Pauli matrix in the particle-hole space.
Spatial inhomogeneity is described in terms of the vielbein
eμa. We use greek letter indices μ ¼ 1, 2, 3 as space indices
for the laboratory frame, and roman letters a ¼ 1̄; 2̄; 3̄
as indices for a local orthogonal frame. As mentioned
above, the spatial inhomogeneity gives rise to an emergent
magnetic field B ¼ Tμkμ with the torsion field, ðTμÞν ¼
1
2
ϵνλρTa

λρe
μ
a, Ta

μν ¼ ∂μeaν − ∂νeaμ, where eaμ is the inverse of
eμa [26–29,54]. It is noted that B plays the role of a chiral
magnetic field, when Tz is nonzero, since the sign of kz at
the Weyl points of the model Eq. (1) corresponds to the
chirality of Weyl fermions. There are several ways of
realizing nonzero B in superconductors. For instance, a
vortex line texture parallel to the z axis, i.e., Δ ¼ Δ0eiϕ,
generates the emergent magnetic field, B ¼ ð0; 0;BzÞ
with Bz ¼ Tμ

12kμ ¼ ðky cosϕ − kx sinϕÞ=r, which does
not depend on kz, and is not a chiral magnetic field, but
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imitates a usual magnetic field. Also, lattice strain such as
twist of a crystal structure with a rotation axis parallel to z
direction gives rise to an emergent chiral magnetic field
along the z axis. In the following, we consider magneto-
resistivity of a thermal current for these two cases.
By using the semiclassical equation of motion with

Berry curvatures for Weyl quasiparticles [54], and the
Boltzmann equation, we obtain the chiral anomaly con-
tribution of the local thermal current JHðrÞ up to leading
terms in B,

JHðrÞ ¼
X

s¼�1

X

k

ðvps ·ΩkksÞ2ε2ks
� ∂f
∂εks

�
τks

×

�∇T
T

·B

�
B; ð2Þ

where εks ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ðkz − sk0zÞ2 þ Δ2ðk2x þ k2yÞ=k2F

q
, vks ¼

∂εks=∂k, τks is the relaxation time, f is the Fermi
distribution function, and Ωkks is the Berry curvature
generated by the monopole charge at the Weyl point,
which characterizes the chiral anomaly contribution.
Equation (2) evidences the negative thermal magnetoresis-
tivity (NTMR) due to the emergent magnetic field B. It is
noted that the chiral anomaly contribution of the thermal
conductivity κA extracted from Eq. (2) exhibits singular
temperature dependence. In the case of a constant relaxation
time, we have

κA ∝ 1=T; ð3Þ

for low T. If one takes into account the temperature
dependence of τks more precisely, the low-temperature
behavior becomes more singular. This behavior is due to
the singularity of the Berry curvature in the vicinity of Weyl
points, i.e., Ωkks ∼ 1=jδkj2 for the deviation from the Weyl
points jδkj → 0. The characteristic T dependence of Eq. (3)
can be utilized for discriminating the chiral anomaly con-
tribution from usual contributions of thermal conductivity of
nodal excitations, κ0 ∝ T for T → 0. However, we must be
careful about the applicability of Eq. (2). The divergent
behavior of Eq. (3) implies that it cannot be used in the low-
temperature limit, for which adiabatic approximation postu-
lated for the derivation of the Berry curvature formula fails.
Thus, Eq. (3) is applicable only in the intermediate temper-
ature region. To investigate thermal transport for the whole
temperature region, we exploit alternative approaches based
on the Keldysh formalism in the following.
Keldysh-Eilenberger approach for cases with vortex

textures.—To confirm the prediction obtained above, and
go beyond adiabatic approximation, which fails in the low-
temperature region, we exploit the Keldysh formalism of
the quasiclassical Eilenberger equation. We consider the 3D
chiral px þ ipy pairing model again, and, first, examine the
case of an emergent magnetic field generated by vortex

textures of the superconducting order parameter. The case
of strain-induced chiral magnetic fields will be considered
later. A merit of the scenario of a vortex-induced emergent
magnetic field is that it can be easily realized for any type-II
superconductors. Transport properties of systems with
inhomogeneous textures are described in terms of the
quasiclassical Green function ǧðk̂; r; ϵÞ with k̂ a unit vector
parallel to the Fermi momentum [54,57–59]. Using the
Keldysh Green function ĝK , we can express a thermal
current as

JHðrÞ ¼ NF

Z
∞

−∞

dϵ
4πi

Z
dk̂ϵvF

1

2
Tr½ĝKðk̂; r; ϵÞ�; ð4Þ

where NF is the density of states at the Fermi level, vF is
the Fermi velocity, and

R
dk̂ � � � is the normalized Fermi

surface average. In this Letter, we consider the spherical
Fermi surface with vF ¼ vFk̂.
Effects of emergent magnetic fields arising from spatial

inhomogeneity can be incorporated via spatial gradient
expansion of the Eilenberger equation, which gives higher-
order quantum corrections to the quasiclassical approxi-
mation. Up to the first order in 1=ðkFξÞ with ξ the
coherence length, the Eilenberger equation with quantum
corrections is given by [54]

½ðϵþ evF · AÞτ3 − ȟ; ǧ� þ ivF · ∇rǧ ¼
i
2
fȟ · ǧg − i

2
fǧ · ȟg;

ð5Þ

where fǎ · b̌g ¼ ∇rǎ · ∇kb̌ − ∇kǎ · ∇rb̌, A is a vector
potential due to an external magnetic field, ȟ ¼ Δ̌þ σ̌imp

with Δ̌ the gap function, and σ̌imp the self-energy due to
impurity scattering, which determines the relaxation time τ
[54]. The nonzero right-hand side term of Eq. (5) describes
leading quantum corrections. For simplicity, we assume
that σ̌imp does not depend on temperature T. In general, σ̌imp

should depend on T, because of the energy dependence of
the density of states of Weyl quasiparticles and the T
dependence of the gap function. However, this simplifica-
tion is useful for the investigation of characteristic T
dependence of thermal conductivity arising from chiral
anomaly, which is predicted from the semiclassical analysis
Eq. (3). Effects of an emergent magnetic field caused by
vortex textures are included in the right-hand side of
Eq. (5). We deal with this term in a perturbative way.
We expand the Green function up to the second order in
1=ðkFξÞ: ǧ ¼ ǧ0 þ ǧ1 þ ǧ2. The nonperturbative part ǧ0 can
be easily calculated from the standard Eilenberger equation
without quantum corrections, supplemented with the nor-
malization condition, ǧ20 ¼ −π2 [60]. The correction terms
ǧ1 and ǧ2 are obtained from an inhomogeneous Eilenberger
equation with leading quantum corrections:
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½ðϵþ evF · AÞτ3 − ȟ; ǧn� þ ivF · ∇rǧn

¼ i
2
fȟ · ǧn−1g −

i
2
fǧn−1 · ȟg: ð6Þ

The thermal conductivity κ ¼ JzH=ð−∂zTÞ is obtained by
substituting the solution of ǧ ¼ ǧ0 þ ǧ1 þ ǧ2 þ � � � to
Eq. (4). The temperature gradient along the vortex line
is incorporated as the boundary condition of the
Keldysh component at z ¼ �∞, gKn ð∞Þ ¼ −2πðgRn − gAnÞ
tanh½ϵ=2Tð�∞Þ� [54], where gR;An are calculated in the
absence of the temperature gradient.
We, first, consider the case of a single vortex with

vorticity m, i.e., ΔðrÞ ¼ Δ0ðTÞ½tanhðr=ξÞ�jmjeimϕ with
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. In this case, we can neglect the vector

potential A in Eq. (6). Solving Eq. (6) numerically for ǧ1
and ǧ2, we found that the contribution from ǧ1 to the
thermal current is negligible. The leading quantum correc-
tion associated with the vortex-induced emergent magnetic
field arises from ǧ2. The calculated results of this quantum
correction term of the thermal conductivity κ2 for vorticity
m ¼ 1, 2, 3 are shown in Fig. 1(a), where κ2 is spatially
averaged over the core region within r ≤ 5ξ. In this
calculation, the BCS-type temperature dependence of the
gap function is assumed, the energy unit is scaled by 2πTc,
and the parameters are set as vF ¼ 20, kF ¼ 1, ξ ¼ 20,
Δ0ð0Þ ¼ 1.765Tc, and 1=τ ¼ 0.002. It is noted that κ2

increases as the vorticity increases. Since the emergent
magnetic field is proportional to the vorticity, this behavior
implies negative magnetoresistivity of thermal currents.
Furthermore, the T dependence of κ2 remarkably exhibits
an upturn increase in the intermediate temperature region,
which is indeed in agreement with the prediction from the
semiclassical analysis, Eq. (3). However, in contrast to
the semiclassical result, which fails in the low-temperature
limit, the T dependence turns to decreasing behaviors in the
low-temperature region, which is consistent with the third
law of thermodynamics. Thus, it is concluded that the
negative magnetoresistivity of thermal currents is a sig-
nature of the chiral anomaly of Weyl quasiparticles. We,
here, comment on the T dependence of the normal self-
energy neglected in our calculations. If one takes into
account the T dependence due to the energy dependence
of the density of states, the increase of the thermal
conductivity is more magnified in the intermediate T
region, because of the longer relaxation time. Thus,
the detection of the chiral anomaly effect becomes more
feasible.
We, next, performed the calculation for the case of a

vortex lattice. For simplicity, a square lattice structure of
vortices is assumed [54,61]. The calculated results of κ2 are
shown in Fig. 1(b), which is the spatially averaged value
over the unit cell. The qualitative characteristic features are
similar to the results for the case with a single vortex. The
thermal conductivity increases as a function of a magnetic
field, and the T dependence qualitatively coincides with the
Berry phase formula Eq. (3) in the intermediate T region,
signifying the chiral anomaly effect. We also calculated the
spatial distribution of thermal currents, and found that
thermal currents are mainly carried by bulk quasiparticles,
rather than bound states in vortex cores, confirming that
the increase of κ2 is due to the chiral anomaly of Weyl
quasiparticles. It is noted that the NTMR in this scenario is
free from the issue of current jetting, which disturbs the
detection of negative magnetoresistivity as a signature of
the chiral anomaly in the case of Weyl semimetals [62]. The
current jetting is caused by inhomogeneity of current
distribution due to the strong Landau quantization. Since
the wave function in the vortex state is the Bloch function,
the current jetting is absent in this case. We stress that the
characteristic temperature dependence found in Fig. 1
cannot be realized for any non-Weyl (non-Dirac) super-
conductors, as revealed by numerous previous studies on
thermal transport in the vortex state [63–75]. Thus, the
NTMR with the characteristic temperature dependence is a
unique feature of Weyl (Dirac) superconductors.
Although the above results establish the NTMR as a

signature of chiral anomaly, the chiral anomaly contribu-
tion shown in Fig. 1(b), which corresponds to the case of
high magnetic fields, is about 0.1% of the total contribu-
tion. The calculation for low fields is not attainable because
of numerical costs. It is known that for small magnetic

(a)

(b)

FIG. 1. (a) κ2 versus T in the case of single vortex with vorticity
m ¼ 1, 2, 3. (b) κ2 versus T in the case of a vortex lattice for
H ¼ 0.08, 0.09, 0.10, 0.11, 0.12 from bottom to top.
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fields close to a lower critical field and for JHkH, the field
dependence of the thermal conductivity due to usual pair
breaking is quite small. Thus, in this case, the experimental
detection of the chiral anomaly contribution is still feasible
by measuring the field-dependent part of the thermal
conductivity. A more promising approach for the detection
of the chiral anomaly effect is to utilize an emergent chiral
magnetic field induced by lattice strain. We consider this
scenario in the following.
Case of strain-induced chiral magnetic fields.—We,

now, explore the case that lattice strain induces a chiral
magnetic field BC in the 3D chiral px þ ipy-wave spinless
superconductor. To simplify the analysis, we introduce the
strain-induced chiral vector potential by hand in the mode,
though the realization of the strain-induced magnetic field
requires multiorbital degrees of freedom [26,37]. Since a
chiral magnetic field causes neither the Meissner effect nor
the vortex state; the pair-breaking effect due to the chiral
magnetic field is remarkably weak [54]. In fact, for the
parameters used in our calculations, the superconducting
state survives against a chiral magnetic eBC ∼<0.03,
and thus, we can expect enormous NTMR due to a large
value of BC. The chiral magnetic field in superconductors
gives rise to a pseudo-Lorentz force, which is obtained
from the right-hand side of Eq. (5) [76]. For simplicity,
we assume a uniform chiral magnetic field parallel to
the z axis, BC ¼ ð0; 0;BCÞ. Then, we end up with the
Eilenberger equation:

½ϵτ3 − ȟ; ǧ� þ ivF ·∇rǧþ ievF ×BC ·
∂
∂kk ǧ ¼ 0: ð7Þ

The last term of Eq. (7) is the pseudo-Lorentz force term.
Since this equation is homogeneous, we need an additional
normalization condition for ǧ to solve it, i.e., ǧ2 ¼ −π2. To
derive an approximate analytic solution of Eq. (7), we
expand ǧ in terms of 1=ðξkFÞ and BC up to the second
order. An explicit expression for quantum corrections of ǧ
due toBC is given in Supplemental Material [54]. Although
the superconducting state is robust against large values of
BC, one cannot neglect the Landau quantization of quasi-
particles for a sufficiently strong chiral magnetic field,
which cannot be treated within the quasiclassical approxi-
mation. Thus, the temperature range in which our method is
valid is limited to T > TL ≡ ffiffiffiffiffiffiffiffiffiffiffi

2eBC
p

Δ=kF, for which the
Landau levels are smeared by a temperature broadening
effect. We calculate a thermal current from Eq. (4) up to
linear order in∇T [58,74]. Numerical results of the thermal
conductivity κ ¼ κ0 þ κ2 with κ0 the nonperturbed zero-
field part and κ2 the field-dependent quantum correction are
shown in Fig. 2. In this calculation, the BCS-type T
dependence of the gap function and the same parameters
as those in the case with vortex-induced magnetic fields
are used.

As seen in Fig. 2, the thermal conductivity increases,
as BC increases, signifying NTMR. Furthermore, for
eBC > ∼0.01, the quantum correction part dominates,
and hence, the total thermal conductivity exhibits a
remarkable increase, as temperature is lowered in the
intermediate temperature region, which is a characteristic
feature of chiral anomaly contributions. The positions of
the peaks of κ for different values of BC shown in Fig. 2(b)
are roughly Tc × Δ=EF, and thus independent of BC. It is
noted that the prominent increase of the thermal conduc-
tivity appears even for temperatures much above TL for
sufficiently large eBC, implying that the increasing behav-
ior of the thermal conductivity is not an artifact of the
quasiclassical approximation. For putative Weyl super-
conductors of uranium-based systems with lattice constants
4–9 Å, BC ≈ 2–5 T can be realized by torsional distortion
around the c axis by 2π per ∼1 μm. On the other hand, for a
lattice constant ∼4 Å, eBC ¼ 0.00125 in Fig. 2 corre-
sponds to BC ∼ 5 T. In such cases, the magnitude of the
chiral anomaly part of the thermal conductivity is more than
10% of the total thermal conductivity, and thus, it is feasible
to detect the characteristic T dependence of κ2 experimen-
tally by extracting the BC-dependent part of the thermal

FIG. 2. (a) κ versus T for eBC ¼ 0.0, 0.00125, 0.0025, 0.00375,
0.005 from bottom to top. For the temperature region T < TL, in
which the quasiclassical approximation fails, the results are
shown as dotted lines. Inset: κ2 versus T for eBC ¼ 0.00125,
0.0025, 0.00375, 0.005 from bottom to top. (b) κ versus T for
eBC ¼ 0.0, 0.01, 0.015, 0.02 from bottom to top. The results for
T < TL are shown as dotted lines.
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conductivity. We also note that the current jetting issue [62]
can be avoided in this case, because the results in Fig. 2
show that the characteristic signature of chiral anomaly, i.e.,
the upturn increase of the thermal conductivity in the
intermediate temperature region, appears even for suffi-
ciently small chiral magnetic fields which do not cause the
inhomogeneous current distribution due to the strong
Landau quantization.
Conclusion.—We have investigated thermal transport in

Weyl superconductors with emergent (chiral) magnetic
fields. It is established that NTMR as a signature of the
chiral anomaly of Weyl quasiparticles can be realized, and
its experimental detection is feasible.
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