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Campus Nord UPC-C2, E-08034 Barcelona, Catalonia, Spain

Fabián Vásquez-Sancho
Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC

and The Barcelona Institute of Science and Technology,
Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain

and Centro de Investigación en Ciencia e Ingeniera de Materiales,
Universidad de Costa Rica, San José 11501, Costa Rica
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The origin of “giant” flexoelectricity, orders of magnitude larger than theoretically predicted, yet
frequently observed, is under intense scrutiny. There is mounting evidence correlating giant flexoelectriclike
effects with parasitic piezoelectricity, but it is not clear how piezoelectricity (polarization generated by strain)
manages to imitate flexoelectricity (polarization generated by strain gradient) in typical beam-bending
experiments, since in a bent beam the net strain is zero. In addition piezoelectricity changes sign under space
inversion but giant flexoelectricity is insensitive to space inversion, seemingly contradicting a piezoelectric
origin. Here we show that, if a piezoelectric material has its piezoelectric coefficient asymmetrically
distributed across the sample, it will generate a nonzero bending-induced polarization impossible to
distinguish from true flexoelectricity even by inverting the sample. The effective flexoelectric coefficient
caused by piezoelectricity is functionally identical to, and often larger than, intrinsic flexoelectricity: our
calculations show that, for standard perovskite ferroelectrics, even a tiny gradient of piezoelectricity (1%
variation of piezoelectric coefficient across 1 mm) is sufficient to yield a giant effective flexoelectric
coefficient of 1 μC=m, three orders of magnitude larger than the intrinsic expectation value.
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Flexoelectricity is attracting growing attention due to its
ability to replicate the electromechanical functionality of
piezoelectric materials, which enables the use of lead-free
dielectrics as flexoelectric replacements for piezoelectrics
[1,2]. Experimental research on this phenomenon is still in
relative infancy, but already there have been controversies
about the magnitude, origin, and even thermodynamic
reversibility of the flexoelectric effect [3–5]. Some of these
controversies are starting to get settled, and, in particular,
there is by now abundant evidence and growing consensus
that seemingly “giant” flexoelectric effects are correlated
with parasitic piezoelectric contributions from polar nano-
regions [6], defect concentration gradients [7], residual
ferroelectricity [8], or surfaces [9–12]. But, while the recent
evidence suggests that indeed piezoelectricity can mimic
flexoelectricity (which is the converse of flexoelectricity
replicating piezoelectricity), it is not clear how (i.e., what are
the necessary conditions for piezoelectricity to be able to

imitate flexoelectricity), nor to what extent the “disguise” is
perfect; i.e., can intrinsic flexoelectricity and flexoelectric-
like piezoelectricity be experimentally distinguished?
To illustrate these questions, consider the following

example: polarization can be generated by flexoelectricity
when the applied deformation is inhomogeneous, e.g.,
when a sample is bent [13–18], but this is not necessarily
true for piezoelectricity: bending a homogeneously poled
piezoelectric beam will not elicit any piezoelectric polari-
zation, see Fig. 1(a), because there is no net strain: the
piezoelectric polarization caused by stretching on the
convex side will be canceled by the opposite polarization
caused by compression on the concave side. Symmetry-
wise, bending-induced piezoelectricity is precluded in a
homogeneous material unless higher-order couplings are
considered, and the deformations required for these are
only achievable in 2D materials or near structural disconti-
nuities [19–21].
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It follows from the previous discussion that the appa-
rently giant flexoelectricity measured by bending some
macroscopically polar materials [7] cannot be caused by a
homogeneous piezoelectric state. Furthermore, because the
existence of macroscopic piezoelectricity can be estab-
lished by space-inversion experiments such as flipping the
sample upside down and verifying that the sign of the
stress-generated charge changes sign [7], see Fig. 1(b), it
was assumed that such space-inversion tests could also be
used to distinguish between piezoelectricity and flexoelec-
tricity [10]. Indeed, the bending-induced polarization of a
flexoelectric cantilever is independent of its orientation, see
Fig. 1(c), but, as we will see, this inversion invariance can
also hold for bent piezoelectric cantilevers.
Here, we analyze the electromechanical response of a

bent piezoelectric beam, one of the common setups to
quantify flexoelectricity [4], and show that (i) it is a
necessary and sufficient condition that the piezoelectric
coefficient be asymmetrically distributed for the beam to be
able to replicate the functional behavior of a flexo-
electric and (ii) that such asymmetric piezoelectricity
cannot be distinguished from flexoelectricity in beam-
bending experiments, even if the sample is turned upside
down; the disguise is, in this respect, perfect. It is also
possible to define an effective flexoelectric constant as a
function of the spatial distribution of piezoelectricity.
Quantitative analysis of this piezo-flexoelectric coefficient
shows that even a relatively modest asymmetry in the
distribution of piezoelectricity can lead to an effectively
giant flexoelectric effect.
The constitutive equation for the electric displacement D

in a linear dielectric solid possessing piezoelectricity and
flexoelectricity is

Di ¼ eiklεkl þ μijkl∇lεjk þ ϵijEj ¼ ϵ0Ei þ Pi; ð1Þ

where E is the electric field, ε is the mechanical strain,
P is the polarization, ∇ε is the strain gradient, e is the
piezoelectric tensor, μ is the flexoelectric tensor, ϵ is the
dielectric tensor, and ϵ0 is the permittivity of vacuum or air.
We begin by analyzing the response of a piezoelectric
flexoelectric cantilever beam under bending, see Fig. 2(a).
We assume that the electric field and polarization exist only
in the beam thickness direction (z) since it has been shown
that the longitudinal electric field is negligible compared
with that in the beam thickness direction [22,23]. Then,
Eq. (1) simplifies to

Dz ¼ e31εxx þ μ13εxx;z þ ϵ33Ez ¼ ϵ0Ez þ Pz; ð2Þ
where the notation e311 ¼ e31 and μ1331 ¼ μ13 are intro-
duced for convenience. Note that μ13, commonly reported
in beam-bending experiments, is actually an effective
flexoelectric coefficient involving a combination of flexo-
electric tensor components [4,16]. In a bent beam, the strain
components εyy and εzz are related to the strain component
εxx through the Poisson’s ratio ν as εyy ¼ εzz ¼ −νεxx [24].
The corresponding through-thickness strain gradients are
then obtained as εyy;z ¼ εzz;z ¼ −νεxx;z. This relationship is
encoded in the effective flexoelectric coefficient as
μ13 ¼ μ̄13 − νðμ̄13 þ μ̄11Þ, where μ̄11 and μ̄13 are the longi-
tudinal and transverse components of the flexoelectric
tensor, respectively. The same applies to the effective
piezoelectric coefficient e31 ¼ ē31 − νðē31 þ ē33Þ, where
ē33 and ē31 are the longitudinal and transverse components
of the piezoelectric tensor, respectively.
In the absence of surface charges and applied voltage, the

electrostatic equilibrium (Maxwell’ s equation) leads to

Dz ¼ ϵ0Ez þ Pz ¼ 0: ð3Þ

Plugging this equation in Eq. (2) and using the Euler
beam hypotheses εxx ¼ −κz and εxx;z ¼ −κ, where κ is

(a) (b) (c)

FIG. 1. (a) Homogeneously poled piezoelectric beam under bending, which does not induce a nonzero net polarization because the
average strain is zero. The color plot presents the electric potential distribution. (b) Piezoelectric polarization induced in a rectangular
sample under tension or compression. The red arrow represents the direction of the material polarization. (c) Flexoelectric polarization
induced in a cantilever beam under bending. The polarization does not change sign by reversing the beam.
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the beam curvature induced by the applied force F, the
polarization in the z direction can be obtained as

PzðzÞ ¼ −
κ

ϵr
ðe31zþ μ13Þ; ð4Þ

where ϵr ¼ ϵ33=ϵ0 is the relative dielectric constant. We
note that this equation can also be derived from analytical
solutions of the electroelastic fields in bending piezo-
electric cantilever beams with the flexoelectric effect
[17,25,26] or gradient piezoelectricity [27,28]. The total
net polarization over the beam thickness is then obtained as

Pt ¼
1

h

Z
h=2

−h=2
Pzdz ¼ −

κ

hϵr

Z
h=2

−h=2
ðe31zþ μ13Þdz: ð5Þ

In the absence of piezoelectricity, i.e., e31 ¼ 0, the
polarization is only induced by the flexoelectric effect,
resulting in a net polarization Pt ¼ −μ13κ=ϵr, independent
of the beam direction. In other words, the net polarization
induced by flexoelectricity does not change sign by
reversing the beam, as expected.
We can also use Eq. (5) to obtain the net polarization

corresponding to a beam where the electromechanical
response is piezoelectric instead of flexoelectric, i.e.,
μ13 ¼ 0. However, bending a homogeneous piezoelectric
beam is unable to produce a nonzero net polarization since
e31z is antisymmetric about the center of the beam (z ¼ 0),
thus leading to a zero net polarization in Eq. (5); see
Fig. 1(a). The physical reason, as mentioned at the
introduction, is that opposite stresses (compressive and
tensile) are induced in the upper and lower halves of the

beam, respectively, resulting in opposite piezoelectric
effects and a zero net polarization. Therefore, bending a
homogeneous piezoelectric beam cannot give a flexoelec-
triclike response.
One way to break the balance of charges in a bent

piezoelectric beam is to replace the top or bottom layers
with a different piezoelectric or even a nonpiezoelectric
layer, as is done, for example, in piezoelectric bimorph
sensors and actuators [29,30]. One such bimorph is
illustrated in Fig. 2(b), in which the bottom layer is
piezoelectric while the top layer is not, i.e., e31 ¼ 0 for
h ≥ 0 and −e31 for h < 0. The bimorph can be seen as an
extreme case of asymmetric piezoelectricity, where e31 is a
Heaviside step function. In this case the net polarization is
obtained from Eq. (5) as Pt ¼ −e31hκ=8ϵr.
A bimorph piezoelectric cantilever thus generates a

polarization just like a flexoelectric cantilever would.
Moreover, the sign (phase shift) of the piezoelectric
polarization does not change by reversing the beam.
Figure 2(c) presents the reversed configuration which is
equivalent to consider e31 ¼ 0 for h < 0. Plugging these
conditions in Eq. (5) leads to a net polarization Pt ¼
−e31hκ=8ϵr, identical both in magnitude and sign, to the
induced polarization in the original bimorph in Fig. 2(b).
Therefore, a bent piezoelectric bimorph is qualitatively
indistinguishable from a bent flexoelectric beam.
We can generalize the conclusions of this example.

Let us assume a generic cantilever beam with an arbitrary
distribution of piezoelectricity e31ðzÞ. Equation (5) results
in a zero net polarization if the piezoelectricity is sym-
metrically distributed about the centre of the beam, i.e., for
any e31ðzÞ such that e31ðzÞ ¼ e31ð−zÞ. Mathematically the

(a)

(b)

(c)

FIG. 2. (a) Schematic of a cantilever beam under the point load F. (b) Schematic of a bimorph cantilever beam where the dark layer is
piezoelectric. (c) A reversed configuration of the bimorph (rotated by 180°). The white arrows represent the polarization direction of the
layers. The color plot presents the electric potential (ϕ) distribution for each bimorph obtained from Eqs. (3) and (4), where Ez ¼ −ϕ;z.
The net polarization can be obtained from the electric potential difference of the top and bottom faces, which is identical in both
bimorphs.
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integrand is antisymmetric about the centre of the beam for
any such symmetrical distribution of piezoelectricity.
Conversely, any asymmetry in the distribution of piezo-
electricity such that e31ðzÞ ≠ e31ð−zÞ will result in a
nonzero integral and thus in a net bending-induced piezo-
electric polarization.
In addition, the sign of the net polarization in Eq. (5)

does not change by flipping the beam. In the flipped
configuration, the coordinate system x − z converts to the
new system x0 − z0, where z0 ¼ −z. Using this conversion
and taking into account the negative sign of e31 in the
flipped configuration, Eq. (5) converts to an identical
equation as a function of z0, retaining its sign. Therefore,
for a piezoelectric beam to be able to indistinguishably
mimic a flexoelectricity [i.e., for Eq. (5) to yield a nonzero
solution that is invariant with respect to space inversion], it
is necessary and sufficient that the piezoelectric coefficient
be asymmetrically distributed across the thickness of the
beam. An example of this general concept is, as mentioned,
the bimorph piezoelectric cantilever, for which e31ðzÞ is a
step function. Another example is surface piezoelectricity,
an inevitable element of the total flexoelectric response
[4,10,12,31,32], which can be modeled as two antisym-
metric step functions in e31ðzÞ, see the Supplemental
Material [33].
Since asymmetric piezoelectricity can mimic flexoelec-

tricity, it is possible to define an effective flexoelectric
constant as a function of the distribution of piezoelectricity.
For a flexoelectric cantilever, the induced polarization as a
function of the beam curvature is given by Pt ¼ −μeκ=ϵr,
where μe is the effective flexoelectric constant. By equating
this polarization to Eq. (5) with μ13 ¼ 0, the effective
flexoelectric constant becomes

μe ≡ 1

h

Z
h=2

−h=2
e31ðzÞzdz: ð6Þ

In order to get some quantitative estimates of how much
pseudoflexoelectricity we can elicit from a gradient of
piezoelectricity, we consider a simple linear distribution of
piezoelectricity as e31ðzÞ ¼ zΔe=hþ e0, where Δe=h is
the slope of the linear gradient of piezoelectricity and
e0 ¼ e31ð0Þ. Plugging this function into Eq. (6) yields an
effective flexoelectric coefficient of

μe ¼ hΔe=12: ð7Þ

Let us use this equation to analyze relevant experimental
cases. Experimental setups to quantify flexoelectricity
commonly employ cantilever beams with a thickness in
the order ofh ¼ 1 mm [14,15,34–37]. Therefore, to induce a
typical “giant” flexoelectric coefficient on the order of
μe ¼ 1 μC=m, as reported for important piezoelectric mate-
rials such as PZT and BaTiO3 [14,15,36], the piezoelectric
variation Δe between the two sides of the 1 mm sample
should be of the order of 10−2 C=m2. Compared to the

average piezoelectric coefficient of PZT and BaTiO3, which
is on the order of 5 C=m2 [38,39], this gradient is equivalent
to a 0.2% change of the piezoelectric constant across the
beam thickness. Therefore, for materials with big piezo-
electric coefficients, even such a tiny gradient of piezoelec-
tricity can yield an apparently giant flexoelectricity. This
calls into question bending-based quantifications of flexoe-
lectricity in the polar phase of ferroelectrics and highlights
the need for alternative experimental approaches.
Another relevant question, of course, is to what extent

these results can be extended to nominally paraelectric
materials. As has recently been reported, even in a
theoretically paraelectric phase, a gradient of defects can
result in a small but measurable macroscopic piezoelec-
tricity [7]. The reported effective piezoelectric coefficients
for paraelectric perovskites is in the order of 0.05 C=m2.
With this average value, the piezoelectric gradient of
10−2 C=m2 across 1 mm needed to yield μe ¼ 1 μC=m
requires a 20% variation of piezoelectricity across the 1 mm
thick beam. Though this gradient is large, it is not
unfeasible. Parenthetically, we note that thermal gradients
can cause differences in thermal expansion and thus also
gradient-induced polarization [40,41]. Temperature
differences between electrodes may therefore also cause
paraelectric materials to behave like piezoelectrics.
Based on the present analysis, we can also suggest the

following approaches to separate asymmetric piezoelec-
tricity from true flexoelectricity:
i. Piezoelectric gradients are anisotropic. Δe in Eq. (7) is

maximum in the direction of the gradient but zero
perpendicular to it. One can therefore perform beam-
bending experiments with different sample cuts to change
the orientation of asymmetric piezoelectricity with respect
to the through-thickness strain gradient. In single crystals
there can also be inherent crystal anisotropy in addition to
extrinsic gradients, but in ceramics the random orientation
of crystallites implies that any measured anisotropy must be
due to extrinsic gradients.
ii. Equation (7) also indicates that the piezoelectric

contribution is proportional to sample size. We can there-
fore perform beam-bending experiments with different
sample thicknesses.
iii. The size dependency also suggests performing local

measurements. Since the more localized the measurement,
the smaller the contribution from spatial distributions, a
truly local measurement would be immune to any asym-
metric distribution of piezoelectricity. The more local the
measurement, the smaller the contribution from spatial
differences of piezoelectricity. In some mechanical mea-
surements, such as indentation or fracture experi-
ments, strain gradients are generated in extremely small
volumes [42–44], and therefore flexoelectric measurements
based on nanomechanical measurements or fracture
mechanics will be generally more robust against asym-
metric piezoelectricity.
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In summary, we show that piezoelectricity can indeed
imitate flexoelectricity (bending-induced polarization) on
the condition that the piezoelectric coefficient is inhomo-
geneously and asymmetrically distributed across the sam-
ple. If this condition is met, asymmetric piezoelectricity
becomes indistinguishable from intrinsic flexoelectricity in
single cantilever-bending experiments. This mimicry com-
plicates the task of interpreting experimental results
although we have suggested some approaches to separate
inhomogeneous piezoelectricity from flexoelectricity.
Piezoelectric mimicry also represents a practical opportu-
nity; just like flexoelectricity was initially conceived as a
way for replicating the device functionality of piezoelec-
trics [1,45,46], asymmetric piezoelectricity may also be
used to imitate the interesting novel functionalities [43,47–
49] provided by flexoelectricity.
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