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We use computer simulations to probe the thermodynamic and dynamic properties of a glass former that
undergoes an ideal glass transition because of the presence of randomly pinned particles. We find that even
deep in the equilibrium glass state, the system relaxes to some extent because of the presence of localized
excitations that allow the system to access different inherent structures, thus giving rise to a nontrivial
contribution to the entropy. By calculating with high accuracy the vibrational part of the entropy, we show
that also in the equilibrium glass state thermodynamics and dynamics give a coherent picture, and that
glasses should not be seen as a disordered solid in which the particles undergo just vibrational motion but
instead as a system with a highly nonlinear internal dynamics.
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The nature of the glass transition is one of the most
challenging research topics in condensed matter physics
and has therefore been the focus of a multitude of studies
[1–5]. Many aspects of the slow and complex dynamics of
supercooled liquids and the resulting glass transition have
been successfully explained in terms of the potential energy
landscape (PEL) [6–10]. In this framework, the configu-
rational space of the system is partitioned into basins of
attraction of the local energy minima (the inherent struc-
tures, ISs) of the potential energy, and the dynamics at low
temperatures is characterized as the motion through the
complex pathway that connects neighboring basins. The
conventional description of glasses is that the glass state
corresponds to a vibrational motion around the ISs, which
in real space means that the particles are trapped by the
cages formed by their neighbors and vibrate around a fixed
amorphous configuration. However, recent experiments
challenge this view, since they seem to suggest that certain
types of relaxation processes are present even in the glass,
implying that the motion of the atoms is more complex than
pure vibrations [11–13]. However, it is difficult to decide
whether these relaxation processes are indeed an equilib-
rium property of the sample or just related to aging. The
existence of equilibrium relaxation processes in the glass
state implies that even at low temperatures the system
explores a complex landscape; i.e., it can access in a finite
time many different local minima. This in turn has the
consequence that the conventional definition of the con-
figurational entropy sconf as the difference between the total
entropy stot of the system and its purely vibrational part svib
should be questioned. Thus, the study of (equilibrium)
relaxation processes in the equilibrium glass state will
allow us to advance our understanding of the meaning of
the glass state on the microscopic level.

Advancing on this question has so far been hampered by
the fact that it was impossible to generate equilibrium
glasses (also called “ideal glasses”), i.e., equilibrium
structures at very low temperatures. This situation has
recently changed since it has been realized that if one pins
(immobilizes) randomly a finite fraction c of the particles
[14], the fluid particles, i.e., nonpinned ones, undergo an
equilibrium glass transition if c is increased beyond a
certain threshold [15,16]. Numerical simulations of simple
glass formers have confirmed that this pinning approach
does indeed allow us to observe an equilibrium glass
transition at which the entropy shows a marked bend,
and hence to access the equilibrium glass state [17,18].
Thus, these results have opened the door to studying the
properties of equilibrium glasses, and in the following we
will demonstrate that even in the ideal glass state relaxation
processes are present, implying that in the glass the entropy
is not just given by the vibrational contribution.
We simulate a binary mixture of N Lennard-Jones (LJ)

particles in three dimensions [19], of which a fraction c are
permanently pinned. N is 300 or 1200, and we use the
standard LJ units for the length, energy, and temperature,
setting the Boltzmann constant kB ¼ 1. First, we have
equilibrated the system without pinned particles at a given
temperature T, then the positions of cN particles are frozen,
and we study the static and dynamical properties of the
remaining ð1 − cÞN nonpinned particles of the system. To
study the static properties, we use the parallel tempering
(PT) molecular dynamics method with 24 replicas [20,21]
(see Refs. [17,18] for details on the pinning procedure and
the PT). For the dynamical properties we use the standard
Monte Carlo (MC) dynamics simulation [22], where an
elementary move is a random displacement of a randomly
chosen particle within a linear box of size δ ¼ 0.15.
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OneMC step, which is our unit of time, consists of ð1 − cÞN
such attempts. Despite the huge acceleration of the sampling
due to the PT, we found that runs up to 2 × 1010 steps were
needed to get statistically significant results. This, and the
necessary averaging over the independent realizations of the
pinned configurations (typically 25 for N ¼ 300 and 10 for
N ¼ 1200) required about 150 years of CPU time.
To probe the relaxation dynamics of the system, we

focus on T ¼ 0.45 and increase c, thus crossing at around
c ¼ 0.1 the boundary between fluid and glass state [see
inset of Fig. 1(b)]. Figure 1(a) shows the mean squared
displacement (MSD) for different values of c: ΔðtÞ ¼
Pð1−cÞN

i¼1 ½hjriðtÞ − rið0Þj2i�=ð1 − cÞN. Here h� � �i and ½� � ��
are the thermal and disorder averages, respectively. Note
that we have averaged the MSD over both species of
particles. At intermediate times ΔðtÞ has a marked plateau
that is related to the usual cage effect observed in glassy
systems [1], and the horizontal dashed line indicates the

plateau height of ΔðtÞ at c ¼ 0.2. Surprisingly, we find that
even in the equilibrium glass phase, i.e., at this temperature
for c ≥ 0.1 (see the Supplemental Material [23]), ΔðtÞ
shows at long times a marked increase above this plateau,
indicating that the particles can leave their cage. To
understand this behavior, we analyze the van Hove corre-
lation function [23] and find that the particles undergo an
exchange motion, i.e., the particles tend to be replaced by
the same kind of particles (see the Supplemental Material
[23]). This seems to explain the upturn of the mean squared
displacement. More surprising are the results regarding
the collective overlap QðtÞ¼P

i;j½hθða− jriðtÞ−rjð0ÞjÞi�,
where θðxÞ is the Heaviside function and a ¼ 0.3. This
function probes the collective relaxation of the system
and is not affected by the particle exchange motions.
Figure 1(b) shows thatQðtÞ decays slightly after the plateau
at intermediate times, before it decays to its long-time limit
[horizontal dashed lines Qðt → ∞Þ ¼ QðstaticÞ], a quantity
that can be calculated with high accuracy directly from the
PT simulations. The very high value of QðstaticÞ > 0.85 and
the strong c dependence of this quantity, see Ref. [18],
demonstrates that the explored state points are indeed glass
states, and hence we can conclude that the system shows a
subtle and nontrivial relaxation dynamics even in the ideal
glass. In the Supplemental Material we show that this is not
an out-of-equilibrium effect [23].
The presence of this relaxation dynamics is at odds

with the results of Ref. [18] that in the glass phase the
configurational entropy sconf seems to be zero [see red
circles in Fig. 3(b)], since sconf ¼ 0 implies that there are
no states into which the system can move to relax. In that
work sconf was estimated from stot − sharm, where sharm is
the entropy of the strictly harmonic solid, i.e., a quantity
that can be obtained directly from the vibrational density
of states. Our present results thus raise the question of
whether sconf can indeed be approximated reliably by this
difference [24–26].
To advance on this point, we have accurately determined

svib by taking into account the effect of anharmonic
vibrations, using two independent approaches. The first
one makes use of the idea of Frenkel and Ladd [27–31] of
introducing a series of systems which parametrically
interpolates between the original system and an Einstein
solid, and then carries out a thermodynamic integration to
calculate the vibrational entropy of the original system. In
practice we have introduced the Hamiltonian βHðαÞ ¼
βHð0Þ þ α

Pð1−cÞN
i¼1 jri − r0ij2, where Hð0Þ is the original

Hamiltonian, β ¼ 1=T, α is a spring constant, and r0i is the
equilibrium configuration of the particle i in the original

system. We then measure the MSD Δα ¼
Pð1−cÞN

i¼1 ×
½hjri − r0ij2i�=ð1 − cÞN, from which we obtain the entropy

sFL ¼ sEðαmaxÞ þ
Z

αmax

0

dαΔα; ð1Þ

(a)

(b)

FIG. 1. (a) Time dependence of the mean squared displacement
ΔðtÞ for different concentrations of pinned particles, c, at T ¼
0.45 for N ¼ 1200. The horizontal dashed line is the height of the
plateau for c ¼ 0.2. (b) The dynamic overlap function QðtÞ at
T ¼ 0.45 for N ¼ 1200 and concentrations c at which the system
is in the equilibrium glass state. The horizontal dashed arrows are
the static overlap functions QðstaticÞ evaluated from the parallel
tempering simulations. The inset shows the state points for the
presented QðtÞ in the phase diagram from Ref. [18].
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where sEðαmaxÞ is the entropy of the Einstein solid. Figure 2
shows Δα for 10−1 ≤ α ≤ 107. For α > 104, this function
follows very closely 3=ð2αÞ, the behavior of the Einstein
solid, and hence we can replace Δα with this expression
if α is large. The entropy for this Einstein solid is then
given by sEðαmaxÞ ¼ 3

2
− 3 lnΛ − 3

2
ln ½ðαmax=πÞ�, where Λ

is the de Broglie thermal wavelength. In practice, we have
set αmax ¼ 107.
At small α, the dependence of Δα on α becomes weak,

suggesting that in this parameter range the particles are
vibrating in a cage created by the original Hamiltonian and
not that of the Einstein solid. However, at the smallest α,Δα

is not completely flat, since at long times the particles are
able to escape slowly from their cages. The height of the
plateau in Δα allows us to estimate the amplitude of the
vibrations in the real system, i.e., to determine the harmonic
and anharmonic component of the motion. Indeed, the
height of the plateau in Δα is consistent with that of ΔðtÞ
from Fig. 1(a). To estimate the entropy that is due to the
vibrational motion, we can evaluate the integral given by
Eq. (1) by replacing the contribution to the integral for
α < αmin ¼ 2 with αminΔαmin

, thus removing in this manner
the contribution of the relaxational part to the entropy. The
so-obtained vibrational entropy sFL is shown in Fig. 3(a)
(green diamonds). As expected, the c dependence of sFL is
smooth and shows no apparent singularity.
The second approach to estimate the anharmonic con-

tribution to the vibrational entropy is to determine the
difference between the potential energy of the system and
its inherent structure energy, and then to subtract the
harmonic part, thus giving the anharmonic part of the
vibrational energy [9,32]. One finds that the so-obtained
energy is negative, which makes it so that the resulting
value for the vibrational entropy, sharm þ sanh, is smaller
than sharm [see blue triangles in Fig. 3(a)], a result that
agrees with previous studies [9,32]. We see that this
quantity agrees very well with our estimate for the
vibrational entropy as obtained from the Frenkel-Ladd

procedure, indicating that we have determined it with good
precision.
Figure 3(b) shows the c dependence of Δs ¼ stot − svib.

We see that the improved estimate for svib makes it so that
now Δs no longer goes to zero even at large c. Instead, it
shows a kink at the concentration at which the order
parameter had a jump [18], indicating that at this point
the thermodynamic properties of the system have a singular
behavior, i.e., that the phase diagram determined in
Ref. [18] is not altered by this improved estimate of svib.
Note that we show data for the two system sizes, and within
the accuracy of the data we see no finite size effects.
To determine the origin of the finite value of Δs in the

ideal glass phase we probe the potential energy landscape
of the system [6–10]. Since at low T the configuration
space can be decomposed into the basins of attraction of
the inherent structures and vibrations around the ISs, an
investigation of the PEL should help us to understand the
nature of the motion of the system. Figure 4(a) shows the
time dependence of the IS energy eISðtÞ, [33,34], for 104
steps of MC dynamics at c ¼ 0.2, a timescale that corre-
sponds to the vibrations inside the cage [see Fig. 1(a)].

FIG. 2. The mean-squared displacement Δα at T ¼ 0.45 for
N ¼ 1200 used for the Frenkel-Ladd thermodynamic integration.
The horizontal dashed line is the plateau height for c ¼ 0.2
shown in Fig. 1(a). The solid line corresponds to the behavior of
the Einstein solid, Δα ¼ 3=ð2αÞ.

(a)

(b)

FIG. 3. (a) c dependence of the total entropy stot, as well as
different estimates of the vibrational entropy. (b) c dependence of
stot − svib. The open and filled symbols are for N ¼ 300 and
N ¼ 1200, respectively. The horizontal arrows locate TKðcÞ,
where the skewness of the overlap distribution becomes zero [18].
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We see that eISðtÞ remains basically constant but shows
some spikes, indicating that the system accesses for a short
period an excited state before it falls back to the original IS,
implying that on this timescale only a single IS is relevant
[10]. Figure 4(d) shows the superposition of the configu-
rations for these ISs, and we see that basically all of them
are identical, in agreement with the result from Fig. 1(a)
that on this timescale the correlation function does not
decay. (For the sake of comparison, we show in the
Supplemental Material a corresponding plot for the fluid
state [23].) If the time window is increased by a factor of
104, as in Fig. 4(b), we find that eISðtÞ starts to make larger
excursions and that these are no longer reversible, indicat-
ing that the system explores new ISs. This is the reason why
on this timescale the correlation function decays slightly;
see Fig. 1(b). Figure 4(e) shows that now there are indeed
many different ISs, but since the corresponding positions
of the particles form small clusters, we can conclude that
the configurations are quite similar. Finally, we show in
Fig. 4(c) the evolution of eISðtÞ as obtained from a PT run.
We see that in this case the value of eISðtÞ fluctuates quite
significantly, but that these fluctuations are still smaller
than the sample-to-sample fluctuations, and therefore we
can infer that there are indeed many different ISs even in the
equilibrium glass state. This conclusion is corroborated by
the real-space image of the configurations, in Fig. 4(f),
which now shows quite a few small clusters, i.e., the
positions of the particles in the different ISs differ by a
small amount. The presence of these different ISs is thus
the reason for the finite value ofΔs. (We emphasize that the
clusters seen in Fig. 4(f) do not depend on the length of
the PT run.) In the Supplemental Material [23], we discuss

the nature of the motion of the particles for the MC
trajectories and show the following: (i) With increasing
time, all nonpinned particles become diffusive; i.e., they
explore the whole available configuration space. (ii) The
movement of the particles is often given by a defectlike
jump motion or by a back-and-forth jump, but sometimes
also involves very complex and compact cooperative
rearrangement that involves quite a few particles.
Our results show that the dynamic and thermodynamic

properties of a system with pinned particles give a coherent
picture of the equilibrium glass state. Although quantities
like the self-intermediate scattering function [35–37] or the
self–van Hove function (see the Supplemental Material
[23]) show decorrelation, the collective functions do not,
once the critical pinning concentration is surpassed. At this
critical concentration the order parameter shows a jump
[18] and the entropy a kink. Our finding that even in the
equilibrium glass state particles are able to explore more
than one IS indicates that care has to be taken in the
definition of the configurational entropy: sconf should not
be identified as the difference between the total entropy and
the purely vibrational part, since such a definition gives rise
to a nonzero sconf even in the ideal glass state. Instead, sconf
is related to the number of local free energy minima [38],
and for the case of the pinned system such a minimum is a
collection of ISs that are geometrically close together. The
motion of the particles inside this local free energy
minimum is the reason for the partial relaxation of the
collective correlation functions. Although the present study
concerns a pinned system, it can be expected that bulk
systems have a similar behavior, since local inhomogene-
ities in the structure will make it so that certain regions in

(a)

(d) (e) (f)

(b) (c)

FIG. 4. (a)–(c): eISðtÞ at T ¼ 0.45 and c ¼ 0.2 for N ¼ 300 samples with (a) 104 and (b) 108 MC time steps, and with (c) 2 × 109 PT
time step. Different lines correspond to different samples. (d)–(f): Superposition of the corresponding snapshots (sample 1) of the IS
configurations with (d) 104 and (e) 108 MC time steps, and with (f) 2 × 109 PT time step. Pinned particles are shown in red (reduced in
size to 0.5), and nonpinned A and B particles are shown in gray and blue, respectively.
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the very deeply supercooled liquid are already frozen in,
thus leading to an extremely high value of the viscosity,
whereas other regions are still mobile. So the evoked
problem with the correct definition of the configurational
entropy is likely to exist also in the case of bulk systems.
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