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We show how to generate tripartite entanglement in a cavity magnomechanical system which consists
of magnons, cavity microwave photons, and phonons. The magnons are embodied by a collective motion
of a large number of spins in a macroscopic ferrimagnet, and are driven directly by an electromagnetic
field. The cavity photons and magnons are coupled via magnetic dipole interaction, and the magnons and
phonons are coupled via magnetostrictive (radiation pressurelike) interaction. We show optimal parameter
regimes for achieving the tripartite entanglement where magnons, cavity photons, and phonons are
entangled with each other, and we further prove that the steady state of the system is a genuinely tripartite
entangled state. The entanglement is robust against temperature. Our results indicate that cavity
magnomechanical systems could provide a promising platform for the study of macroscopic quantum
phenomena.
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In recent years ferrimagnetic systems, especially the
yttrium iron garnet (YIG) sphere, have attracted consid-
erable interest from the perspective of cavity quantum
electrodynamics (QED). It is found that the Kittel mode [1]
in the YIG sphere can realize strong coupling with the
microwave photons in a high-quality cavity, leading to
cavity polaritons [2–6] and the vacuum Rabi splitting. Thus
many ideas originally developed in cavity QED can be
applied to magnon cavity QED [7–11]. Other interesting
developments in the context of magnon cavity QED are,
e.g., the observation of bistability [12] and the coupling of a
single superconducting qubit to the Kittel mode [13].
Clearly, magnon systems provide us with a new platform
for studying unique effects of strong-coupling QED. This is
very similar to other platforms provided by superconduct-
ing qubits [14], semiconductor qubits [15], and double
quantum dots [16].
The developments in cavity QED resulted in the birth of

the new field of cavity optomechanics, where mechanical
elements are coupled to the cavity via radiation pressure
[17]. The field of cavity optomechanics is now being
studied with many different systems such as superconduct-
ing elements [18]. Recently, significant progress has been
reported on the study of quantum effects, e.g., the quantum
entanglement between mechanics and a cavity field [19], as
well as between two massive mechanical oscillators [20,21]
have been observed. In light of these advances, it is natural
to investigate the utility of magnon systems in cavity
optomechanics and their quantum characteristics. We note
that the first realization of the magnon-photon-phonon
interaction has been reported [22], where photons are

coupled to magnons as in magnon QED and, in addition,
magnons get coupled to phonons. The consequences of the
magnon-phonon coupling are observed in the cavity output,
but this study is at the mean field level; i.e., all quantum
fluctuations are ignored.
Here we present a full quantum theory of the magnon-

photon-phonon system. We show that it is possible to
observe quantum effects, e.g., entanglement, between
magnons, cavity photons, and phonons. Specifically, we
show that, based on experimentally reachable parameters,
not only all bipartite entanglements but also genuine
tripartite entanglement could be generated in the magnon-
photon-phonon system. All entanglements are robust
against environmental temperature. The entanglement
arises from the magnon-phonon coupling, without which
it vanishes. We model the system by using the standard
Langevin formalism, solve the linearized dynamics and
quantify the entanglement in the stationary state. Finally,
we analyze the validity of our model and show how to
measure the generated entanglement.
We consider a hybrid cavity magnomechanical system

[22], which consists of cavity microwave photons, mag-
nons, and phonons, as shown in Fig. 1(a). The magnons are
embodied by a collective motion of a large number of spins
in a ferrimagnet, e.g., a YIG sphere (a 250-μm-diameter
sphere is used in Ref. [22]). The magnetic dipole inter-
action mediates the coupling between magnons and cavity
photons. The magnons couple to phonons via magneto-
strictive interaction. Specifically, the varying magnetization
induced by the magnon excitation inside the YIG sphere
leads to the deformation of its geometry structure, which
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forms vibrational modes (phonons) of the sphere, and vice
versa [23]. We consider the size of the sphere is much
smaller than the microwave wavelength, such that the effect
of radiation pressure is negligible. The Hamiltonian of the
system reads

H=ℏ ¼ ωaa†aþ ωmm†mþ ωb

2
ðq2 þ p2Þ þ gmbm†mq

þ gmaðaþ a†Þðmþm†Þ þ iΩðm†e−iω0t −meiω0tÞ;
ð1Þ

where a (a†) and m (m†) (½O;O†� ¼ 1, O ¼ a, m) are the
annihilation (creation) operator of the cavity and magnon
modes, respectively, q and p (½q; p� ¼ i) are the dimen-
sionless position and momentum quadratures of the
mechanical mode, and ωa, ωm, and ωb are the resonance
frequency of the cavity, magnon, and mechanical modes,
respectively. The magnon frequency is determined by the
external bias magnetic fieldH and the gyromagnetic ratio γ,
i.e., ωm ¼ γH. The magnon-microwave coupling rate gma
can be larger than the dissipation rates of the cavity
and magnon modes, κa and κm, entering into the strong
coupling regime, gma > κa, κm [2–6]. The single-magnon
magnomechanical coupling rate gmb is typically small, but

the magnomechanical interaction can be enhanced by
driving the magnon mode with a strong microwave field
(directly driving the YIG sphere with a microwave source
has been adopted in Refs. [12,24]). The Rabi frequency

Ω ¼
ffiffi
5

p
4
γ

ffiffiffiffi
N

p
B0 [25] denotes the coupling strength of the

drive magnetic field (with amplitude B0 and frequency ω0)
with the magnon mode, where γ=2π ¼ 28 GHz=T, and the
total number of spins N ¼ ρV with V the volume of the
sphere and ρ ¼ 4.22 × 1027 m−3 the spin density of
the YIG. Note that Ω is derived under the assumption of
the low-lying excitations, hm†mi ≪ 2Ns, where s ¼ 5

2
is

the spin number of the ground state Fe3þ ion in YIG.
In the frame rotating at the drive frequency ω0 and

applying the rotating-wave approximation, gmaðaþ a†Þ
ðmþm†Þ → gmaðam† þ a†mÞ (valid when ωa, ωm ≫
gma, κa, κm, which is easily satisfied [22]), the quantum
Langevin equations (QLEs) describing the system are
given by

_a ¼ −ðiΔa þ κaÞa − igmamþ
ffiffiffiffiffiffiffi
2κa

p
ain;

_m ¼ −ðiΔm þ κmÞm − igmaa − igmbmqþ Ωþ
ffiffiffiffiffiffiffiffi
2κm

p
min;

_q ¼ ωbp; _p ¼ −ωbq − γbp − gmbm†mþ ξ; ð2Þ

where Δa ¼ ωa − ω0, Δm ¼ ωm − ω0, γb is the mechanical
damping rate, and ain, min, and ξ are input noise operators
for the cavity, magnon, and mechanical modes, respec-
tively, which are zero mean and characterized by the
following correlation functions [28]: hainðtÞain†ðt0Þi¼
½NaðωaÞþ1�δðt−t0Þ, hain†ðtÞainðt0Þi¼NaðωaÞδðt−t0Þ, and
hminðtÞmin†ðt0Þi¼½NmðωmÞþ1�δðt−t0Þ, hmin†ðtÞminðt0Þi ¼
NmðωmÞδðt − t0Þ, and hξðtÞξðt0Þ þ ξðt0ÞξðtÞi=2≃
γb½2NbðωbÞ þ 1�δðt − t0Þ, where a Markovian approxima-
tion has been made, which is valid for a large mechanical
quality factor Q ¼ ωb=γb ≫ 1 [29] (a prerequisite for
seeing quantum effects like entanglement), and NjðωjÞ¼
½exp½ðℏωj=kBTÞ�−1�−1 (j ¼ a, m, b) are the equilibrium
mean thermal photon, magnon, and phonon number,
respectively.
We assume that the magnon mode is strongly driven,

leading to a large amplitude jhmij ≫ 1 at the steady state,
and due to the cavity-magnon beam splitter interaction,
the cavity field also has a large amplitude jhaij ≫ 1. This
allows us to linearize the dynamics of the system around
the steady-state values by writing any operator as O ¼
hOi þ δO (O ¼ a, m, q, p) and neglecting second order
fluctuation terms. The linearized QLEs describing the
quadrature fluctuations ðδX; δY; δx; δy; δq; δpÞ, with δX ¼
ðδaþ δa†Þ= ffiffiffi

2
p

, δY¼iðδa†−δaÞ= ffiffiffi
2

p
, δx ¼ ðδmþ δm†Þ=ffiffiffi

2
p

, and δy ¼ iðδm† − δmÞ= ffiffiffi
2

p
, can be written as

_uðtÞ ¼ AuðtÞ þ nðtÞ; ð3Þ

FIG. 1. (a) Sketch of the system. AYIG sphere is placed inside
a microwave cavity near the maximum magnetic field of the
cavity mode, and simultaneously in a uniform bias magnetic
field, which establish the magnon-photon coupling. The magnon
mode is directly driven by a microwave source (not shown) to
enhance the magnomechanical coupling. The bias magnetic field
(z direction), the drive magnetic field (y direction) and the
magnetic field (x direction) of the cavity mode are mutually
perpendicular at the site of the YIG sphere. (b) Frequencies and
linewidths of the system. The magnon mode with frequency ωm
and linewidth κm is driven by a microwave field at frequency ω0

and the mechanical motion at frequency ωb scatters photons onto
the two sidebands at ω0 � ωb. If the magnon mode is resonant
with the blue (anti-Stokes) sideband and the cavity with fre-
quency ωa and linewidth κa is resonant with the red (Stokes)
sideband, the system exhibits genuine magnon-photon-phonon
entanglement.
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where uðtÞ¼½δXðtÞ;δYðtÞ;δxðtÞ;δyðtÞ;δqðtÞ;δpðtÞ�T , nðtÞ¼
½ ffiffiffiffiffiffiffi

2κa
p

XinðtÞ; ffiffiffiffiffiffiffi
2κa

p
Y inðtÞ; ffiffiffiffiffiffiffiffi

2κm
p

xinðtÞ; ffiffiffiffiffiffiffiffi
2κm

p
yinðtÞ;0;ξðtÞ�T

is the vector of input noises, and the drift matrix A is
given by

A ¼

0
BBBBBBBBB@

−κa Δa 0 gma 0 0

−Δa −κa −gma 0 0 0

0 gma −κm Δ̃m −Gmb 0

−gma 0 −Δ̃m −κm 0 0

0 0 0 0 0 ωb

0 0 0 Gmb −ωb −γb

1
CCCCCCCCCA

; ð4Þ

where Δ̃m ¼ Δm þ gmbhqi is the effective magnon-drive
detuning including the frequency shift due to the magno-
mechanical interaction, and Gmb ¼ i

ffiffiffi
2

p
gmbhmi is the

effective magnomechanical coupling rate, where
hqi ¼ −ðgmb=ωbÞjhmij2, and hmi is given by

hmi ¼ ΩðiΔa þ κaÞ
g2ma þ ðiΔ̃m þ κmÞðiΔa þ κaÞ

; ð5Þ

which takes a simpler form

hmi ≃ iΩΔa

g2ma − Δ̃mΔa
ð6Þ

(a pure imaginary number), when jΔ̃mj; jΔaj ≫ κa; κm. The
drift matrix in Eq. (4) is provided under this condition. In
fact, we will show later that jΔ̃mj; jΔaj ≃ ωb ≫ κa; κm [see
Fig. 1(b)] are optimal for the presence of all bipartite
entanglements of the system. A similar finding has been
observed in a hybrid atom-light-mirror system [30,31] due
to the similarity of their Hamiltonians. Note that Eq. (5) is
intrinsically nonlinear since Δ̃m contains jhmij2. However,
for a given value of Δ̃m (one can always alter Δm by
adjusting the bias magnetic field) hmi, and thusGmb, can be
achieved straightforwardly.
Because of the linearized dynamics and the Gaussian

nature of the quantum noises, the steady state of the
quantum fluctuations of the system is a continuous variable
(CV) three-mode Gaussian state, which is completely
characterized by a 6 × 6 covariance matrix (CM) V with
its entries defined as Vij ¼ 1

2
huiðtÞujðt0Þ þ ujðt0ÞuiðtÞi

(i; j ¼ 1; 2;…; 6). The steady-state CM V can be achieved
by solving the Lyapunov equation [32,33]

AV þ VAT ¼ −D; ð7Þ

where D¼diag½κað2Naþ1Þ;κað2Naþ1Þ;κmð2Nmþ1Þ;
κmð2Nmþ1Þ;0;γbð2Nbþ1Þ� is the diffusion matrix,

which is defined through hniðtÞnjðt0Þ þ njðt0ÞniðtÞi=2 ¼
Dijδðt − t0Þ. To investigate bipartite and tripartite entangle-
ment of the system, we adopt quantitative measures of the
logarithmic negativity EN [34] and the residual contangle
Rτ [35], respectively, where contangle is a CVanalogue of
tangle for discrete-variable tripartite entanglement [36]. A
bona fide quantification of tripartite entanglement is given
by the minimum residual contangle [35]

Rmin
τ ≡min½Rajmb

τ ;Rmjab
τ ;Rbjam

τ �; ð8Þ

where Rijjk
τ ≡ Cijjk − Cijj − Cijk ≥ 0 (i; j; k ¼ a, m, b) is

the residual contangle, with Cujv the contangle of sub-
systems of u and v (v contains one or two modes), which is
a proper entanglement monotone defined as the squared
logarithmic negativity (see Ref. [25] for more details of
calculating EN and Rτ). A nonzero minimum residual
contangle Rmin

τ > 0 denotes the presence of genuine
tripartite entanglement in the system.
The foremost task of studying entanglement properties in

such a hybrid system is to find optimal detunings Δa and
Δ̃m, i.e., to find optimal effective interactions among the
three modes that can generate tripartite entanglement of
them. In Fig. 2(a)–2(c), we show three bipartite entangle-
ments versus detunings Δa and Δ̃m: Eam, Emb, and Eab
denote the cavity-magnon, magnon-phonon, and cavity-
phonon entanglement, respectively. All results are in the
steady state guaranteed by the negative eigenvalues (real
parts) of the drift matrix A. It shows that there exists a
parameter regime, around Δ̃m ≃ ωb and Δa ≃ −ωb [see
Fig. 1(b)], where all bipartite entanglements are present.
In Fig. 2, we have employed experimentally feasible
parameters [22]: ωa=2π ¼ 10 GHz, ωb=2π ¼ 10 MHz,

FIG. 2. Density plot of bipartite entanglement (a) Eam, (b) Emb,
and (c) Eab versus detunings Δa and Δ̃m. (d) Density plot of Eam
versus Δa and the ratio ofGmb=gma (gma is fixed). The parameters
are as in (a)–(c) but for Δ̃m ¼ 0.9ωb. See text for the details of the
other parameters.
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γb=2π ¼ 102 Hz, κa=2π ¼ κm=2π ¼ 1 MHz, gma=2π ¼
Gmb=2π ¼ 3.2 MHz, and at low temperature T¼10mK.
In this situation, g2ma ≪ jΔ̃mΔaj ≃ ω2

b, the effective mag-
nomechanical couplingGmb ≃

ffiffiffi
2

p
gmbðΩ=ωbÞ [see Eq. (6)].

Gmb=2π ¼ 3.2 MHz implies the drive magnetic field B0 ≃
3.9 × 10−5 T for gmb=2π ≃ 0.2 Hz [37], corresponding to
the drive power P ¼ 8.9 mW [38]. In order to have all
sizable bipartite entanglements and at the same time keep
the system stable, the two couplings gma andGmb should be
on the same order of magnitude and take moderate values.
The physics of the optimal detuning Δ̃m ≃ ωb is as follows:
The entanglement only survives with small thermal phonon
occupancy. At this detuning, the magnomechanical (radi-
ation pressurelike) interaction significantly cools the
mechanical mode and, simultaneously, a considerable
magnomechanical entanglement is generated due to the
strong coupling [39]. The complementary distribution of
the entanglement in Figs. 2(b) and 2(a), 2(c) indicates that
the initial magnon-phonon entanglement is partially trans-
ferred to the cavity-magnon and cavity-phonon subsys-
tems, and this effect is prominent when the cavity detuning
Δa ≃ −ωb. Our hybrid system shows two advantages:
(i) without involving the phonons the cavity photons and
magnons interact via a beam splitter interaction which
yields zero entanglement between them. Nevertheless, by
introducing the magnon-phonon interaction the cavity
photons and magnons get entangled. This is clearly shown
in Fig. 2(d), where the cavity-magnon entanglement
Eam ¼ 0 when Gmb ¼ 0 and Eam increases with Gmb;
(ii) thanks to the mediation of the magnons, the indirectly
coupled cavity photons and phonons get entangled and the
entanglement is even larger than those in directly coupled
subsystems.
Note that the above results are valid only when the

magnon excitation number hm†mi ≪ 2Ns ¼ 5N. For a
250-μm-diameter YIG sphere, the number of spins
N ≃ 3.5 × 1016, and Gmb=2π ¼ 3.2 MHz corresponds to
jhmij ≃ 1.1 × 107, and Ω ≃ 7.1 × 1014 Hz, leading to
hm†mi ≃ 1.2 × 1014 ≪ 5N ¼ 1.8 × 1017, which is well
fulfilled. The strong magnon pump may cause unwanted
nonlinear effects due to the Kerr nonlinear termKm†mm†m
in the Hamiltonian [12,24], where K is the Kerr coefficient,
which is inversely proportional to the volume of the sphere.
For a 1-mm-diameter YIG sphere used in Refs. [12,24],
K=2π ≈ 10−10 Hz [40], and thus for what we use a 250-μm-
diameter sphere, K=2π ≈ 6.4 × 10−9 Hz. In order to
keep the Kerr effect negligible, Kjhmij3 ≪ Ω must hold.
For the parameters used in Fig. 2, we have Kjhmij3≃
5.7 × 1013 Hz ≪ Ω ≃ 7.1 × 1014 Hz, implying that the
nonlinear effects are negligible and the linearization treat-
ment of the model is a good approximation.
Figure 3(a) shows more clearly the presence and

interplay of the three bipartite entanglements. The param-
eters are as in Fig. 2 but with a larger coupling rate

Gmb=2π ¼ 4.8 MHz and an optimal detuning Δ̃m ≃ 0.9ωb.
All bipartite entanglements are robust against temperature
and survive up to about 200 mK, as shown in the inset of
Fig. 3(a). Apart from the simultaneous presence of all
bipartite entanglements, the steady state of the system is
also a genuinely tripartite entangled state, as demonstrated
by the nonzero minimum residual contangle Rmin

τ in
Fig. 3(b). Note that a 1.5 times larger Gmb is used in
Fig. 3 than in Fig. 2, and hence gmb=2π ≃ 0.3 Hz should
be used to avoid the nonlinear effects with the same
drive power.
Lastly, we discuss how to detect and verify the entan-

glement. The generated tripartite or bipartite entanglement
can be verified by measuring the corresponding CMs
[19,32]. The cavity field quadratures can be measured
directly by homodyning the cavity output. The magnon
state can be read out by sending a weak microwave probe
field and by homodyning the cavity output of the
probe field. This requires that the dissipation rate of the
magnon mode should be much smaller than that of
the cavity mode, such that when the drive is switched
off and all cavity photons decay the magnon state remains
almost unchanged, at which time a probe field is sent.
Figure 4 shows the entanglements for the case of κa ¼ 5κm,
where tripartite entanglement can still be achieved. Finally,
the mechanical quadratures can be measured by coupling
the YIG sphere to an additional optical cavity which is
driven by a weak red-detuned light. In this situation, the
optomechanical interaction is effectively a beam splitter

FIG. 3. (a) Eam (dot-dashed), Emb (dashed), and Eab (solid)
versus Δa, and temperature (see the inset). In the inset Δa is
optimized, respectively, for each bipartite entanglement. (b) Tri-
partite entanglement in terms of the minimum residual contangle
Rmin

τ versus Δa. We take Gmb=2π ¼ 4.8 MHz and Δ̃m ¼ 0.9ωb.
The other parameters are as in Fig. 2.

FIG. 4. (a) Eam (dot-dashed), Emb (dashed), and Eab (solid)
versus Δa. (b) Minimum residual contangle Rmin

τ versus Δa. The
parameters are as in Fig. 3 except for κa=2π ¼ 3 MHz and
κm ¼ κa=5.
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interaction which maps the phonon state onto the cavity
output field [41].
In conclusion, we have presented a scheme to generate

tripartite entanglement in a cavity magnomechanical sys-
tem where a microwave cavity mode is coupled to a
magnon mode in a YIG sphere, and the latter is simulta-
neously coupled to a mechanical mode via magnetostrictive
force. We have shown that with experimentally reachable
parameters cavity photons, magnons, and phonons can be
entangled with each other and the steady state of the system
exhibits genuine tripartite entanglement. We have also
provided possible strategies to measure the entanglement.
Our scheme will open new perspectives for the realization
of quantum interfaces among microwave, magnonic, and
mechanical systems serving for the quantum information
processing, where the mechanical oscillator can act as
storage of information which can be transferred to other
systems leading to hybridization. Our work suggests the
possibility of several lines of investigation, for example, the
study of tripartite entanglement in magnon-photon-super-
conducting qubit systems [42], where the quantized states
of magnons have been observed. It should be possible to
prepare the magnon system in a variety of nonclassical
states by suitably driving it or by using nonlinear collective
interaction [43,44] quadratic in spin operators.
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