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We investigate the Kondo effect in an open quantum system, motivated by recent experiments with
ultracold alkaline-earth(-like) atoms. Because of inelastic collisions and the associated atom losses, this
system is described by a complex-valued Kondo interaction and provides a non-Hermitian extension of the
Kondo problem. We show that the non-Hermiticity induces anomalous reversion of renormalization-group
flows which violate the g theorem due to nonunitarity and produce a quantum phase transition unique to
non-Hermiticity. Furthermore, we exactly solve the non-Hermitian Kondo Hamiltonian using a generalized
Bethe ansatz method and find the critical line consistent with the renormalization-group flow.
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Isolated quantum systems are governed by unitary
dynamics and described by Hermitian Hamiltonians, yet
no quantum system is completely isolated in reality and
dissipation is ubiquitous in nature. The nonunitary dynam-
ics of open quantum systems permits an effective descrip-
tion based on non-Hermitian Hamiltonians under an
appropriate condition [1,2]. Contrary to the conventional
wisdom that the dissipation is detrimental to quantum
coherence, studies of non-Hermitian quantum dynamics
have revealed unique quantum phenomena such as uncon-
ventional phase transitions from real to complex energy
spectra [3–5], quantum critical behavior beyond the equi-
librium universality class [6–8], and exotic topological
phases [9–16]. Experiments on these phenomena have
rapidly progressed over the past decade using engineered
dissipation in optical systems and ultracold atoms [17–24].
However, most of the previous studies focused on single-

particle quantum mechanics, and many-body physics with
interparticle interactions has not been explored barring
some exceptions [6,7,25–28]. In fact, many-body systems
exhibit emergent behavior which cannot be explained by a
simple single-particle picture. If the interactions are arbi-
trarily weak, their effects can be significant and even
nonperturbative, as represented by the BCS theory of
superconductivity [29]. Therefore, the interplay between
strong correlations and non-Hermiticity is expected to bring
about hitherto unnoticed quantum many-body effects
inherent in open quantum systems.
In this Letter, we study a quantum many-body effect in

a non-Hermitian interacting system, highlighting the role
of interactions with complex coefficients. Our focus is a
paradigmatic Fermi-surface effect in strongly correlated
systems: the Kondo effect [29–31]. This effect serves as a
minimal physical setup to investigate the strong correlation
caused by a single magnetic impurity immersed in a Fermi

sea. At low temperatures, low-energy excitations near the
Fermi surface cooperatively form a many-body spin-singlet
state with the impurity, and this Kondo singlet exhibits a
nonperturbative energy dependence on the interaction. We
show that a recent experimental realization of the Kondo
system with ultracold atoms [32] offers a non-Hermitian
Kondo Hamiltonian due to inelastic collisions and the
associated atom losses, thereby generalizing the Kondo
problem to non-Hermitian physics. Employing the Kondo
Hamiltonian with complex-valued interactions, we find
that the non-Hermiticity induces an exotic renormalization-
group (RG) flow where the flow starting from a fixed point
eventually returns to the original point (see Fig. 1). Such
reversion of RG flows manifestly violates the g theorem
[33,34], presenting a spectacular physical consequence of
non-Hermiticity. We also find a quantum phase transition
between the Kondo phase and the non-Kondo phase,

FIG. 1. RG flow of the non-Hermitian Kondo model (3) up to
the 2-loop order. The blue curve shows the critical line obtained
from the analytical solution of the RG equation [Eq. (S7) in
Supplemental Material [35]], and the red curve is the critical line
obtained from the Bethe-ansatz solution [Eq. (16)].
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accompanied by divergence of the non-Hermitian inter-
action at the critical point.
Moreover, we find an exact solution of this non-

Hermitian Kondo problem by using a generalized Bethe
ansatz method [36–39], which demonstrates that the
integrability of the Kondo model is not spoiled even if
the interaction coupling constant is complex. Thus our
model affords a nontrivial many-body example of non-
Hermitian quantum integrable models. The obtained exact
result for the critical line shows a good agreement with the
prediction of the RG.
Setup.—We first describe our setup and derive the non-

Hermitian Kondo Hamiltonian. Our setup is similar to the
recent experiment using ultracold alkaline-earth-like atoms
[32]. We consider an equilibrium gas of alkaline-earth-like
fermionic atoms in the electronic ground state (1S0) in a
three-dimensional optical lattice. We assume that the atoms
partially occupy the lowest band of the tight-binding model
and thus form a metallic state. Then, a weak laser, which is
tuned for the clock transition, excites a fraction of atoms to
a metastable excited state (3P0). By choosing an appropriate
optical lattice wavelength, the atoms in the 3P0 state can
strongly be confined and behave as immobile impurities,
whereas those in the 1S0 state can move between lattice
sites [40]. Since both of the electronic states have nuclear
spin degrees of freedom (here we assume spin 1=2), the
system around an impurity is described by the Kondo
Hamiltonian [40]

H ¼
X
k;σ

εkc
†
kσckσ þ

1

Ns

X
k;k0;σ;σ0

c†kσck0σ0 ðvrδσσ0 − Jrσσσ0 · SimpÞ:

ð1Þ

Here, ckσ denotes the annihilation operator of the 1S0
atoms with momentum k and spin σ ¼ ↑;↓, εk is the band
dispersion, and Ns is the number of sites. The last two
terms in Eq. (1) describe the interactions between
free fermions and the impurity, where σ is the three-
component Pauli matrix vector and Simp is the impurity
spin operator. The spin-independent potential scattering
vr and the spin-exchange scattering Jr are related to the
s-wave scattering lengths aþeg (a−eg) in the spin-singlet
(triplet) channel as vr ∝ aþeg þ 3a−eg and Jr ∝ aþeg − a−eg
[40] (see also Ref. [41]).
The Kondo effect in ultracold alkaline-earth-

like atoms has been extensively studied in literature
[40–51]. However, the previous studies did not consider
the inelastic scattering between the 1S0 and 3P0 states,
which causes two-body losses of scattered atoms as
observed experimentally [32,52–54]. As time elapses,
some of the impurities in the initial state are lost due to
inelastic collisions but other impurities will survive.
The atom losses are described by a quantum master
equation [1]

dρðtÞ
dt

¼ −i½H; ρ� þ
X

α¼þ;−;↑↑;↓↓

�
LαρL

†
α −

1

2
fL†

αLα; ρg
�

¼ −iðHeffρ − ρH†
effÞ þ

X
α

LαρL
†
α; ð2Þ

where ρðtÞ is the density matrix of the atomic cloud.
The Lindblad operators L�, L↑↑; L↓↓ describe the two-
body losses of 1S0 and 3P0 atoms via the corresponding
inelastic scattering channels in spin states j�i¼ðj↑↓i�
j↓↑iÞ= ffiffiffi

2
p

; j↑↑i; j↓↓i (see Ref. [35] for their explicit
forms). Such two-body losses emerge as effective imagi-
nary interactions in the non-Hermitian Hamiltonian Heff ¼
H − ði=2ÞPα¼þ;−;↑↑;↓↓L

†
αLα. By unraveling the dynamics

of the density matrix into quantum trajectories [1,2], we
can decompose the dynamics into the Schrödinger evolu-
tion under the effective non-Hermitian Hamiltonian and a
stochastic quantum-jump process described by the last
term in the second line of Eq. (2). Note that the quantum
jumps cause the loss of impurity atoms from the trap;
therefore, the dynamics around a surviving impurity is
obtained by projecting out the quantum jumps and
described by the non-Hermitian Kondo Hamiltonian

Heff ¼
X
k;σ

εkc
†
kσckσ þ

1

Ns

X
k;k0;σ;σ0

c†kσck0σ0 ðvδσσ0 − Jσσσ0 · SimpÞ

ð3Þ
with complex-valued interactions v ¼ vr þ ivi and J ¼
Jr þ iJi (vr, vi, Jr, Ji ∈ R) [35]. After the excitation of
the 3P0 state, the atomic gas around the impurity under-
goes the quench dynamics under Heff. We note that, even
if there is no loss event at the impurity site, the effect of
inelastic scattering is not negligible; the backaction from
projecting out quantum jumps influences the behavior of
the system through the non-Hermitian part of Heff . In this
Letter, we analyze the properties of Heff and focus on
whether or not the eigenstates show the Kondo effect.
Renormalization-group analysis.—To unveil the Kondo

physics in the non-Hermitian Hamiltonian (3), we first
employ the poor-man’s RG method [55] of integrating out
the high-energy part of the conduction band. Note that even
if the Hamiltonian (3) is non-Hermitian, the dispersion
relation εk of the conduction band is real and thus the high-
energy part is well defined. Since the poor-man’s scaling
can formally be performed regardless of whether the
coupling J is real or complex, we obtain the RG equation
up to the 2-loop order which takes the same form as in the
Hermitian case [56,57]:

dJ
d lnD

¼ ρ0J2 þ
ρ20
2
J3; ð4Þ

where D is one-half of the bandwidth of the conduction
band and ρ0 is the density of states at the Fermi energy.
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For simplicity, here we have neglected the potential
scattering since it does not affect the qualitative behavior
as shown later. Figure 1 shows the RG flow in the complex-
interaction plane. On the real axis (the Hermitian Kondo
problem), the system flows from the free fixed point J ¼ 0
to the Kondo fixed point J ¼ −2=ρ0. Remarkably, the RG
flow extended to the non-Hermitian case indicates a
quantum phase transition between the Kondo phase
and the non-Kondo phase separated by a critical line
(blue curve in Fig. 1). An analytical formula for the critical
line is available in the Supplemental Material [35]. On the
critical line, the imaginary part of the coupling diverges
at Jr ¼ −2=ð3ρ0Þ.
We emphasize that the phase transition from the Kondo

phase to the non-Kondo phase should not be regarded as a
consequence of decoherence due to the atom loss, since no
atom is lost at the surviving impurity site. The physical
origin of the transition is attributed to a phenomenon
similar to the continuous quantum Zeno effect [58–62];
the strong losses effectively deplete particles surrounding
the impurity, thereby destroying the Kondo singlet. Since
the Kondo singlet is formed in the spin sector, the phase
transition cannot be caused by the inelastic potential
scattering (which only affects the charge sector); it requires
the imaginary spin-exchange interaction.
Furthermore, the RG flow shown in Fig. 1 has a dramatic

feature. In the non-Kondo phase with Jr < 0, the RG flow
starts from the free fixed point and eventually returns back
to the original fixed point. Such reversion of the RG flow is
usually forbidden in Hermitian cases, since the g theorem
[33,34] dictates that the ground-state degeneracy mono-
tonically decrease along the RG flow. In our case, the non-
Hermiticity breaks the unitarity, thereby invalidating one of
the key assumptions of the g theorem. Thus, the RG flow in
Fig. 1 is allowed by the non-Hermiticity.
To understand the physics of the reversion of the

flows, we calculate an energy scale TKdiss defined by
JrðTKdissÞ ¼ 0 and JiðTKdissÞ ≠ 0. This energy scale cor-
responds to a characteristic scale where the dissipative
Kondo system begins to show the reversion of the running
coupling constants to the free fixed point. As detailed in the
Supplemental Material [35], the result is

TKdiss¼
Dffiffiffi
2

p
�
1þ 4

ðρ0J̃iÞ2
�1

4

���� ρ0J
1þ 1

2
ρ0J

����
1
2

exp
�

Jr
ρ0jJj2

�
; ð5Þ

where J̃i is the imaginary Kondo coupling at that scale.
Near the critical line and for jρ0Jj ≪ 1, this expression is
simplified as

TKdiss ≃
Dffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffi
jρ0Jj

p
exp

�
Jr

ρ0jJj2
�
; ð6Þ

which is a natural generalization of the well-known form of
the Kondo temperature [29] to the non-Hermitian case.

Thus, the reversion of the RG flows is nonperturbative in
terms of the Kondo coupling. The new nonperturbative
scale TKdiss can be regarded as a remnant of the Kondo
physics after the transition into the non-Kondo phase
induced by non-Hermiticity.
Generalized Bethe-ansatz solution.—So far the non-

Hermitian Kondo physics has been discussed on the basis
of the perturbative RG, which is applicable only in the weak
coupling regime. To confirm the prediction of the RG flow,
we derive an exact solution of the non-Hermitian Kondo
model (3) by using the Bethe ansatz method [36–39].
The low-energy behavior of the Kondo model is exactly
solvable if the band dispersion is linearized around the
Fermi energy. In the non-Hermitian physics, this low-
energy condition is understood as the condition for the real
part of the energy. The Yang-Baxter integrability condition
for the Kondo model reads

P12R10R20 ¼ R20R10P12; ð7Þ

where P12 ¼ 1
2
ð1þ σ1 · σ2Þ and Rj0 ¼ exp½−2πiρ0v−

iπρ0Jσj · Simp�. Notably, this Yang-Baxter relation holds
for arbitrary v; J ∈ C; therefore, the integrability of the
Kondo model is maintained even if the Kondo interaction is
complex. This striking property enables us to obtain exact
results for the non-Hermitian Kondo model. The Bethe
equations are given by

kjL ¼ 2πIj − 2πρ0v − πρ0J=2 −
XM
α¼1

½θðλαÞ þ π�; ð8Þ

NθðλαÞ ¼ 2πKα − θðλα þ 1=gÞ þ
XM
β¼1

θ

�
λα − λβ

2

�
; ð9Þ

where θðxÞ ¼ 2 arctanð2xÞ, g ¼ − tanðπρ0JÞ, j ¼ 1;…; N,
and α ¼ 1;…;M. Here, kj and λα denote the quasimo-
mentum and the spin rapidity, respectively, N is the number
of the conduction fermions, M is the number of spin-
down particles, and L is the length of the effective one-
dimensional system after the linearization of the dispersion.
The quantum numbers are taken as Ij ∈ ZðZþ 1=2Þ for
even (odd) N, and Kα ∈ ZðZþ 1=2Þ for even (odd)
N −M. Since the effect of the potential scattering v is
an overall shift of the quasimomenta, it does not contribute
to the Kondo physics which is determined by the spin part
(9). A numerical solution of the Bethe equations (9) is
plotted in Fig. 2. Here we show the solution that is
continuously connected to that of the ground state in the
Hermitian case by setting Kα ¼ ðN −MÞ=2 − ðα − 1Þ.
Reflecting the non-Hermiticity, the spin rapidity takes
complex values in general. However, the deviation from
the real axis is small and negligible in the thermodynamic
limit N → ∞, since the non-Hermiticity appears only
through the impurity part. Since the effect of the single
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impurity becomes irrelevant in the N → ∞ limit in Eqs. (8)
and (9), the Kondo physics appears through the 1=N
correction in the physical quantities calculated from the
Bethe-ansatz solution.
Now let us examine the property of the ground state (in

the sense of the real part of the energy) from the Bethe
equations for the case of M ¼ N=2. We introduce the
density of the spin rapidities by σðλÞ≡ ð1=NÞ½dKðλÞ=dλ� ¼
a1ðλÞþ ð1=NÞa1ðλþ 1=gÞ− ð1=NÞPM

β¼1 a2ðλ− λβÞ with
anðλÞ ¼ ð1=2πÞ½dθðλ=nÞ=dλ� ¼ ð1=2πÞ½n=ðλ2 þ n2=4Þ�. In
the thermodynamic limit, we can replace the sum with the
integral as ð1=NÞPM

β¼1 →
R
C dλ

0σðλ0Þ and thus obtain an
integral equation for σðλÞ:

σðλÞ ¼ a1ðλÞ þ
1

N
a1ðλþ 1=gÞ −

Z
C
dλ0a2ðλ − λ0Þσðλ0Þ:

ð10Þ

The trajectory C runs over ð−∞;∞Þ in the Hermitian
case. In the non-Hermitian case, it shows a small detour
(of the order of 1=N) from the real axis, but can be
deformed onto it due to the analyticity of a2ðλ − λ0Þσðλ0Þ.
To extract the contribution from the impurity, we divide
the density into the host part and the impurity part as
σðλÞ ¼ σhðλÞ þ ð1=NÞσiðλÞ. Substituting this into Eq. (10)
and extracting the 1=N term, we obtain

σiðλÞ ¼ a1ðλþ 1=gÞ −
Z

∞

−∞
dλ0a2ðλ − λ0Þσiðλ0Þ: ð11Þ

This equation can easily be solved by the Fourier trans-
formation, giving

σiðλÞ ¼
Z

∞

−∞

dω
2π

e−iωλ
â1ðω; gÞ
1þ e−jωj

; ð12Þ

where

â1ðω; gÞ≡
Z

∞

−∞
dλ

1

2π

1

ðλþ 1=gÞ2 þ 1=4
eiωλ: ð13Þ

The integral (13) depends on the Kondo coupling. The
integrand in Eq. (13) has two poles located at λ ¼
−1=g� i=2. Therefore, for 0 ≤ Imð1=gÞ < 1=2, we have

â1ðω; gÞ ¼ e−iω=g½ΘðωÞe−ω=2 þ Θð−ωÞeω=2�; ð14Þ

and for Imð1=gÞ > 1=2, we have

â1ðω; gÞ ¼ Θð−ωÞe−iω=gðeω=2 − e−ω=2Þ; ð15Þ

where ΘðωÞ is the Heaviside unit-step function. Using
these results, we obtain the impurity magnetization
as Mi¼1=2−

R
∞
−∞dλσiðλÞ¼ ½1− limω→0â1ðω;gÞ�=2. We

end up with Mi ¼ 0 for 0 ≤ Imð1=gÞ < 1=2 and Mi ¼
1=2 for Imð1=gÞ > 1=2. Thus, there is a phase transition
between the Kondo and the non-Kondo phases at

Imð1=gÞ ¼ 1=2; ð16Þ

accompanied by the jump of the impurity magnetization.
In the Kondo phase, the Kondo singlet is formed and the
impurity spin is screened. In the non-Kondo phase, the
Kondo screening does not occur and the impurity spin
remains active.
The transition (16) is shown by the red curve in Fig. 1.

Remarkably, the exact result shows a good agreement with
the RG result in the weak-coupling case jρ0Jj≲ 0.3. We
can show that the two results exactly coincide in the weak-
coupling limit [35]. The deviation in the strong-coupling
case is due to the fact that the Bethe ansatz method requires
the linearization of the band dispersion and thus cannot be
applied to the strong-coupling case jρ0Jj≳ 0.5 as inferred
from the expression of g.
Discussion and conclusion.—The inelastic collisions in

the alkaline-earth atomic gases are usually considered to
be detrimental to observing quantum many-body physics
[32,53,54]. Nevertheless, here we have shown that the
inelastic collisions open a new avenue to non-Hermitian
many-body physics. Using the previously measured loss
rates due to the interorbital inelastic collisions for 173Yb
[52], we obtain a rough estimate of the imaginary part of the
interaction strength as ρ0Ji ∼ 10−3 (here we assume that the
hopping rate is of the order of 100 Hz). This indicates that
the atomic gas of 173Yb is likely to be in the Kondo phase;
importantly, we note that the inelastic collision rate can
be controlled by external confinement [32], an orbital
Feshbach resonance [53,54,63], or photoassociation [62].
These experimental techniques for controlling the dissipa-
tion in atomic gases will enable detection of the non-
Hermitian quantum phase transition. We also note that

FIG. 2. Spin rapidities obtained from the numerical solutions of
the Bethe equations (9) for the total number of particles N ¼ 60,
100, 200 and the number of spin-down particles M ¼ N=2. The
Kondo coupling is set to be ρ0J ¼ −0.3þ 0.1i.
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171Yb atoms are yet another promising candidate for the
non-Hermitian Kondo effect, since an antiferromagnetic
spin-exchange interaction has recently been observed [64],
while measurements of the loss rate have been performed
only at high temperatures [65]. The presence of the Kondo
state in the atomic gas can be diagnosed by measuring the
impurity magnetization and dynamical spin susceptibility
[41]. In addition, the quantum gas microscopy [66] can be
used for observing space-resolved spin correlations around
the Kondo impurity as well as time-dependent dynamics.
An important open question is to elucidate an exper-

imental signature of the emergent energy scale TKdiss,
which characterizes the reversion of RG flows. Although
there is no clear notion of temperature in the out-of-
equilibrium dissipative dynamics, the spatial or temporal
evolution of the spin correlations can potentially reflect the
characteristics of the RG flow, as in recent numerical results
for a Hermitian system [67,68].
The nature of the non-Hermitian quantum phase tran-

sition is also an important issue. The divergent imaginary
Kondo interaction in the RG implies that the phase
transition is of genuine non-Hermitian nature. Moreover,
the Bethe-ansatz method in the thermodynamic limit does
not work at the critical point, since the trajectory of the spin
rapidity crosses the pole of the integrand in Eq. (13). This
suggests that the critical point may correspond to an
exceptional point [5], where the Hamiltonian cannot be
diagonalized. This problem merits further study.
The reversion of RG flows discovered in this Letter is

not limited to the Kondo effect but can widely emerge when
a system has a marginally relevant interaction. We thus
expect that our finding not only serves as a non-Hermitian
generalization of the Kondo physics, but also captures a
universal aspect of many-body physics in non-Hermitian
quantum systems. The universality of non-Hermitian sys-
tems merits future investigation.
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