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Weak magnetic monopoles with a continuum of charges less than the minimum implied by Dirac’s
quantization condition may be possible in nonassociative quantum mechanics. If a weakly magnetically
charged proton in a hydrogen atom perturbs the standard energy spectrum only slightly, magnetic charges
could have escaped detection. Testing this hypothesis requires entirely new methods to compute energy
spectra in nonassociative quantum mechanics. Such methods are presented here, and evaluated for upper
bounds on the magnetic charge of elementary particles.
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In 1931, Dirac [1] showed that magnetic monopoles with
charge g can be consistently described by wave functions
provided the quantization condition eg ¼ Nℏ holds with
half-integer N. Since the elementary electric charge e (or,
rather, the fine structure constant) is small, the elementary
magnetic charge is large. Therefore, there are strict limits
on the possible magnetic charge of, say, a proton in a
hydrogen nucleus because the strong magnetic charge
would significantly alter the energy spectrum [2].
The aim of this Letter is to point out and analyze the fact

that Dirac’s argument relies on properties of wave functions
in a Hilbert space, and therefore implicitly assumes that
quantum mechanics is associative. If the assumption of
associativity is dropped, there is no Hilbert-space repre-
sentation of the algebra of observables (which by necessity
would always be associative), but quantum mechanics may
still be meaningful [3–6]. Indeed, the existence of consistent
nonassociative algebras for magnetic charge densities has
recently been demonstrated [7–11]. Nonassociative quan-
tum mechanics can therefore be defined by replacing the
operator product of observables with an abstract product,
such that â1ðâ2â3Þ ≠ ðâ1â2Þâ3 in general. States are defined
as expectation-value functionals that assign complex num-
bers hâi to algebra elements â, subject to certain consistency
conditions which make sure that uncertainty relations are
respected. No wave functions appear in this formalism, and
there is no analog of “single valuedness” used crucially by
Dirac. Without wave functions, Dirac’s argument therefore
loses its footing.Magneticmonopoles are then possiblewith

small charges much less than the smallest nonzero value,
g0 ¼ 1

2
ℏ=e, allowed by Dirac. It is conceivable that a small

magnetic charge of the proton could have escaped detection
in precision spectroscopy such as [12].
Here, we show that even a small magnetic charge of the

nucleus would significantly shift the ground-state energy of
a hydrogen atom. To the best of our knowledge, this is the
first time that properties of energy spectra have been
computed in nonassociative quantum mechanics. We pro-
vide new methods to compute spectra in an algebraic
manner, which may also be useful in other contexts.
Harmonic oscillator.—We first demonstrate the new

methods in an application to the harmonic oscillator in
standard, associative quantum mechanics. We have two
distinguished observables q̂ and p̂ with ½q̂; p̂� ¼ iℏ, and the
quantum Hamiltonian Ĥ ¼ 1

2
ðp̂2=mþmω2q̂2Þ.

An eigenstate jψEi of Ĥ with eigenvalue E obeys the
equation ĤjψEi ¼ EjψEi, which implies

hâðĤ − EÞiE ¼ 0 ð1Þ
for the expectation value h·iE taken in jψEi, where â can be
any polynomial in q̂ and p̂. We will first show that (1),
which amounts to infinitely many equations given the
freedom of choosing â, allows one to compute the spectrum
of Ĥ even if the eigenstates jψEi are not known. In [13,14],
it has been shown how observables can be computed using
algebraic relations between moments of a state. The
methods used here are closely related to these papers but
provide a new application to energy spectra. In this way, we
will set up a method to compute eigenvalues without using
wave functions or boundary conditions. The same method
can then be applied to the Coulomb problem in non-
associative quantum mechanics.
The demonstration is based on recurrence with respect to

the degree of the polynomial â in q̂ and p̂. The ground-state
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energy can be obtained by elementary calculations as
follows: First, â ¼ 1̂ (the identity operator) gives E ¼
1
2
ðhp̂2iE=mþmω2hq̂2iEÞ. For â not the identity, it is useful

to refer to the equation

h½â; Ĥ�iE ¼hâ ĤiE− hâ†ĤiE¼EðhâiE− hâ†iEÞ¼ 0; ð2Þ

with the complex conjugate z̄ of a complex number z. In
particular, h½q̂; Ĥ�iE ¼ iℏhp̂iE=m ¼ 0 from â ¼ q̂ and
h½p̂; Ĥ�iE ¼ −iℏmω2hq̂iE ¼ 0 from â ¼ p̂. From quadratic
monomials, we obtain h½q̂2;Ĥ�iE¼ 1

2
iℏhq̂p̂þp̂q̂iE=m¼0

and h½q̂p̂;Ĥ�iE¼ iℏðhp̂2iE=m−mω2hq̂2iEÞ¼0. Therefore,
any eigenstate has fluctuations obeying ΔEp ¼ mωΔEq,
and zero covariance 0 ¼ CE

qp ¼ 1
2
hq̂ p̂þp̂ q̂iE − hq̂iEhp̂iE.

From the condition for â ¼ 1̂, ðΔEqÞ2 ¼ E=ðmω2Þ and
ðΔEpÞ2 ¼ mE.
So far, we have computed moments of a bound state in

terms of its energy value E. We obtain a restriction on E by
making sure that the fluctuations we derived obey the
uncertainty relation

ðΔEqÞ2ðΔEpÞ2 − ðCE
qpÞ2 ¼

E2

ω2
≥
ℏ2

4
ð3Þ

and therefore E ≥ 1
2
ℏω.

In order to evaluate all the conditions imposed on
eigenstates by (1), we follow [15,16] and introduce the
operators T̂m;n ≔ ðq̂mp̂nÞWeyl where m and n are non-
negative integers, and the subscript indicates that the product
is taken in the totally symmetric ordering. The Hamiltonian
is a linear combination Ĥ ¼ 1

2
ðT̂2;0=mþmω2T̂0;2Þ of T̂2;0

and T̂0;2, and therefore (1) contains products of the form
T̂m;nT̂m0;n0 . Using the basic commutation relation of q̂ and p̂,
such products can always be rewritten as sums over
individual T̂m00;n00 of order mþ nþm0 þ n0 or less, as
derived explicitly in [17]. The condition (1) is therefore
equivalent to a recurrence relation for hT̂m;niE which is
shown and discussed in more detail in our Supplemental
Material [18]. (This material also uses an algebraic
notion of states [19] and makes contact with effective
constraints [20,21].)
In addition to higher-order moments hT̂m;niE of an

eigenstate, we have higher-order uncertainty relations.
They can be obtained just like Heisenberg’s version, by
applying the textbook derivation to integer powers of q̂ and
p̂ or their products instead of just q̂ and p̂. A systematic
procedure to organize these higher-order, or generalized,
uncertainty relations has been given in [15,16]. For our
purposes, a subset of these relations is sufficient, which
can be constructed as follows: We define ξ̂J as the 2J-
dimensional column vector consisting of all T̂m;0 and
T̂m−1;1 up to order m ¼ 2J, where J is an integer or
half-integer. According to the generalized uncertainty

principle, the matrix MJ ¼ hξ̂J ξ̂†Ji is positive semidefinite
for all J, where the expectation value is taken element by
element. For J ¼ 1=2, we have Heisenberg’s uncertainty
principle because a positive semidefinite matrix has a non-
negative determinant.
As outlined in the Supplemental Material [18], positive

semidefiniteness of MJ can be reduced to the conditions

Yn
k¼1

ðE=ℏω − αkÞðE=ℏωþ αkÞ ≥ 0 ð4Þ

for all integer n ≥ 1, where αk ¼ ð2k − 1Þ=2 are the odd
half-integer multiples. Considered as functions of E for all
n, these expressions have nodes at ℏωαk up to some
maximum k that depends on the particular value of n.
Between nodes, the functions are nonzero and alternate in
sign. Moreover, sending n to nþ 1 causes the signs at fixed
E to alternate. This behavior combined with the non-
negativity of (4) implies that the only allowable values for E
occur at the nodes. We can exclude negative values of E
because we have already shown that E ≥ 1

2
ℏω. Thus, the

only possible values for E are such that E=ℏω ¼ 1
2
; 3
2
; 5
2
;…

in agreement with the well-known eigenvalues of the
harmonic oscillator.
Moreover, the arguments just given show that, for each

eigenvalue En ¼ ðn − 1
2
Þℏω, there is a generalized uncer-

tainty relation which restricts higher-order moments and is
saturated by the corresponding excited state with energy
En. This result generalizes the well-known statement that
the ground state of the harmonic oscillator saturates
Heisenberg’s uncertainty relation. Also note that our
derivation, based on expectation values, still applies if
the state used is mixed, given by a density matrix. Since we
obtain the usual energy spectrum of the harmonic oscillator,
it follows that mixed states do not to enlarge the spectrum.
As another consequence, we obtain the full energy

spectrum of the harmonic oscillator from the unfamiliar
condition (1) on energy eigenvalues. This result serves as a
proof of concept of the new algebraic method introduced
here, which we now apply to the Coulomb problem. We
will then be ready to generalize the results to nonassociative
quantum mechanics, where the usual methods of comput-
ing eigenvalues are not available.
Hydrogen.—The hydrogen atom has the Hamiltonian

Ĥ ¼ 1
2
jp̂j2=m − αr̂−1, where jp̂j2 ¼ p̂2

x þ p̂2
y þ p̂2

z and
r̂2 ¼ x̂2 þ ŷ2 þ ẑ2. The position and momentum compo-
nents are subject to the basic commutation relations
½x̂; p̂x� ¼ ½ŷ; p̂y� ¼ ½ẑ; p̂z� ¼ iℏ. For our purposes a differ-
ent choice of distinguished observables,

r̂; P̂ ≔ r̂jp̂j2; Q̂ ≔ x̂p̂x þ ŷp̂y þ ẑp̂z; ð5Þ

is more useful. Closely related variables have been used,
quite differently, to compute hydrogen spectra in deforma-
tion quantization [22–24].
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These operators have linear commutation relations

½r̂; Q̂� ¼ iℏr̂; ½r̂; P̂� ¼ 2iℏQ̂; ½Q̂; P̂� ¼ iℏP̂; ð6Þ

and there is a Casimir operator

K̂ ¼ 1

2
ðr̂ P̂þP̂ r̂Þ − Q̂2 ð7Þ

that commutes with r̂, P̂, and Q̂. A direct calculation in
terms of the position and momentum components in (5)
shows that K̂ is equal to the total angular momentum
squared. We should keep in mind that not all the distin-
guished observables are self-adjoint. We do have r̂† ¼ r̂,
but Q̂† ¼ Q̂ − 3iℏ and

P̂† ¼ P̂ − 2iℏr̂−1Q̂ ¼ P̂ − 2iℏQ̂r̂−1 − 2ℏ2r̂−1: ð8Þ

As in our demonstration using the harmonic oscillator,
we will be interested in expectation values of monomials in
r̂, P̂, and Q̂ evaluated in eigenstates that obey (1). We have
another useful relationship between certain expectation
values given by the virial theorem

αhr̂−1iE ¼ 2E ¼ −
1

m
hp̂2iE: ð9Þ

The procedure used for the harmonic oscillator does not
directly apply to the Coulomb problem because the
Hamiltonian is no longer quadratic, leading to highly
coupled recurrence relations. We therefore reformulate
the condition (1) in terms of a constraint linear in P̂ and
r̂, introducing

ĈE ¼ r̂ðĤ − EÞ ¼ 1

2m
P̂ − Er̂ − α: ð10Þ

The condition on the spectrum of Ĥ then takes the form
hâĈEiE ¼ 0 for all polynomials â in r̂, r̂−1, P̂, and Q̂.
Unlike the Hamiltonian, ĈE is not self-adjoint. It is still
useful to apply commutator identities as in (2), but with a
non-self-adjoint ĈE, there are additional terms: In an
eigenstate such that hâĈEiE ¼ 0 and hâ†ĈEiE ¼ 0,

0 ¼ hâĈEiE − hâ†ĈEiE ¼ hðâĈE − Ĉ†
EâiE: ð11Þ

With

Ĉ†
E ¼ ĈE −

iℏ
m
r̂−1Q̂ ¼ ĈE −

iℏ
m
Q̂r̂−1 −

ℏ2

m
r̂−1 ð12Þ

using (8), we have

0 ¼ h½â; ĈE�iE
iℏ

þ hQ̂r̂−1âiE
m

−
iℏhr̂−1âiE

m
: ð13Þ

For â ¼ Q̂,

0 ¼ hP̂iE
2m

þ Ehr̂iE þ hQ̂2r̂−1iE
m

þ ℏ2

m
hr̂−1iE: ð14Þ

If we replace Q̂2 using the Casimir operator K̂, and hP̂iE
using hĈEiE ¼ 0, we have 0¼3αþ4Ehr̂iE−Klhr̂−1iE=m.
The eigenvalues Kl ¼ lðlþ 1Þℏ2 of K̂ follow from angu-
lar-momentumquantization, and hr̂−1iE is related toE by (9).
With these ingredients and similar calculations for â ¼ r̂ Q̂,
we obtain

hr̂iE ¼ 1

2

Kl

mα
−
3

4

α

E
;

hr̂2iE ¼ 3

4

Kl

mE
þ 5

8

α2

E2
−
1

4

ℏ2

mE
: ð15Þ

In order to determine the allowed eigenvalues E, as
before, we have to impose uncertainty relations. We are
interested here in the ground state, for which we can focus
on the lowest-order uncertainty relations, computed for our
noncanonical operators r̂, P̂, and Q̂ using the Cauchy-
Schwarz inequality. There is only one nontrivial relation,

ðΔErÞ2CE
Q̄Q ≥

����CE
rQ þ 1

2
iℏhr̂iE

����2; ð16Þ

with two covariances. Again using (13), we compute
hQ̂iE ¼ 1

2
iℏ using â ¼ r̂, hr̂ Q̂þQ̂ r̂iE ¼ iℏhr̂iE using

â ¼ r̂2. Finally, hQ̂†Q̂iE¼hQ̂2iE−3iℏhQ̂iE can be obtained
using K̂.
Inserting all the required moments and factorizing the

resulting polynomial in E, (16) gives the condition

l2ðlþ 1Þ2ðl2 þ l − 1Þ 1
E

�
Eþ 1

2

mα2

ℏ2ðlþ 1Þ2
�

×

�
Eþ 1

2

mα2

ℏ2l2

��
E −

1

2

mα2

ℏ2ðl2 þ l − 1Þ
�

≥ 0: ð17Þ

It is saturated for all energy eigenvalues with maximal l,
for which

Elþ1 ¼ −
mα2

2ℏ2ðlþ 1Þ2 : ð18Þ

Assuming the well-known degeneracy of the hydrogen
spectrum, we obtain the full set of bound-state energies. As
in the example of the harmonic oscillator, every eigenstate
saturates an uncertainty relation, in this case (16).
Nonassociative hydrogen.—We are now in a position

to derive our main result. In the presence of a magnetic
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central charge, we cannot use canonical momenta because
they require a vector potential of the magnetic field B⃗.
Instead, we generate an algebra using kinematical electron
momenta, quantizing pi ¼ m_xi. Their commutators are
obtained by generalizing the case in which there is a vector
potential A⃗ depending on x⃗, and canonical momenta are
πi ¼ pi þ eAi. Therefore,

½p̂j; p̂k� ¼ iℏe

� ˆ∂Ak

∂xj −
ˆ∂Aj

∂xk
�

¼ iℏe
X3
l¼1

ϵjklB̂
l; ð19Þ

while ½x̂j; p̂k� ¼ iℏδjk is unchanged.
The final result depends only on B⃗ and therefore can be

used to define the commutators ½p̂j; p̂k� also if ∇ · B⃗ ≠ 0 in
the presence of magnetic charges. A direct calculation
shows that these commutators then no longer obey the
Jacobi identity:

½½p̂x; p̂y�; p̂z� þ ½½p̂y; p̂z�; p̂x� þ ½½p̂z; p̂x�; p̂y�

¼ iℏe
X3
j¼1

½B̂j; p̂j� ¼ −ℏ2e ˆdivB⃗ ≠ 0: ð20Þ

Even a single pointlike monopole cannot be excised, as in
Dirac’s construction, if we consider weak charges that do
not obey the quantization condition. However, a non-
associative algebra generated by commuting x̂i and non-
commuting p̂j, with standard commutators between x̂i and
p̂j, is still meaningful [3,4].
Another direct calculation shows that the commutators of

(r̂, Q̂, P̂) remain unchanged provided that r⃗ × B⃗ ¼ 0. This
result, which relies on unexpected cancellations of the extra
terms in commutators implied by (19), is crucial for the new
application in this Letter. In this case, B⃗ ¼ gðr⃗Þr⃗. For a
static magnetic field, we have ∇ × B⃗ ¼ 0, which implies
that gðrÞ is spherically symmetric. A monopole density
∇ · B⃗ ≠ 0 then requires that gðrÞ ¼ QmðrÞ=ð4πr3Þ with the
magnetic charge

QmðrÞ ¼ 4π

Z
∇ · B⃗ðrÞr2dr ð21Þ

enclosed in a sphere of radius r. For a single monopole at
r ¼ 0, gðrÞ ¼ g is constant.
The virial theorem relies only on algebraic properties and

remains valid. With monopole commutators for momentum
components, however, the modified angular momentum
ˆL⃗ 0 ¼ ˆL⃗þ egˆr⃗=r̂, not ˆL⃗ itself, satisfies the usual commu-
tators of angular momentum [25,26]. The Casimir of the

algebra generated by (r̂, Q̂, P̂) is still equal to K̂ ¼ ˆL⃗ 2, but
in terms of the modified angular momentum it has an extra
term:

K̂ ¼ ˆL⃗ 2 ¼ ˆL⃗ 02 − e2g2: ð22Þ

For a single monopole at the center, the spectrum of K̂ has a
simple shift compared with the standard spectrum of L̂ 2,
which is known to break the l degeneracy of the hydrogen
spectrum [2]. Moreover, the allowed values of l are
restricted for nonzero g because K̂, by definition, is positive,
and so must be its eigenvalues. Therefore, l ¼ 0 is not
possible for g ≠ 0, and larger lmay be ruled out as well for
strong magnetic charges.
We will focus now on the range of weak magnetic

charges given by

0 <
eg
ℏ

¼ N <
1

2
: ð23Þ

None of these values could bemodeled by aDiracmonopole
(they would not correspond to single-valued wave func-
tions), but they can be considered if quantum mechanics is
nonassociative. Since the algebraic relations used to derive
(17) are still applicable, we obtain conditions on the energy
spectrum. The only difference is that the eigenvalues of K̂
are now given by Kl ¼ lðlþ 1Þℏ2 − e2g2, which can be
taken into account by replacing l in (17) with

l̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
lþ 1

2

�
2

−
e2g2

ℏ2

s
−
1

2
: ð24Þ

For quantized magnetic charges, the corresponding eigen-
values for which the first parenthesis in (17) is zero are
indeed included in the spectrum found in [2], but they no
longer constitute the full spectrum.
For weak magnetic charges, positivity of K̂ requires that

the smallest possible l is l ¼ 1=2, which we use for the
ground state. The corresponding l̃ is equal to

l̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − N2

p
−
1

2
ð25Þ

and lies in the range 1
2
ð ffiffiffi

3
p

− 1Þ < l̃ < 1
2
. This range does

not come close to the integer values 0 or 1 which would
amount to standard hydrogen eigenvalues. Therefore, even
for weak magnetic monopoles the energy spectrum of
hydrogen is strongly modified. The ground-state energy is
discontinuous in the central magnetic charge as a conse-
quence of the positivity condition K ≥ 0, which is the
reason why even a small magnetic charge is not a simple
perturbation of the usual hydrogen spectrum.
This result would seem to rule out any nonzero magnetic

charge of the proton. However, from a purely experimental
perspective, the smallest eigenvalue of the total angular
momentum, used in our evaluation of K ≥ 0, is zero
only within some uncertainty. The angular momentum
spectrum is very basic and hard to modify. For instance,
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the conservation law and its role played in parity consid-
erations implies that, for a single component, it has the form
of a ladder centered around zero. It is, however, conceivable
that its values are washed out to within some δL2. To
estimate this quantity, we are not restricted to hydrogenlike
systems because all energy levels depend in some way on
the eigenvalues of L̂ 2. The best relative precision, of about
5 × 10−19, is obtained for spectral lines used in atomic
clocks [27]. In SI units, a nonzero upper bound

g≤
4πϵ0

ffiffiffiffiffiffiffiffi
δL2

p
c2

e
≈4.7×10−18Am¼1.4×10−9gDirac ð26Þ

then follows from K ≥ 0 and (22), where gDirac is the
smallest magnetic charge allowed by Dirac.
For the proton, this bound is not as strong as existing

ones [28,29]. However, the bounds in [28,29] are obtained
by limiting the total magnetic charge of a macroscopic
object, adding the individual charges of all electrons or
nucleons. Our bound is obtained directly for a single
proton. Moreover, the magnetic charge of the muon is
more difficult to bound [29]. Our bound, on the other hand,
also applies to a muon as the nucleus of muonium, and to
antimatter such as the antiproton in antihydrogen [30,31] or
the positron in positronium [32].
If we directly apply hydrogen or muonium spectroscopy,

with accuracies of ΔE=E ≈ 4.5 × 10−15 [12] and about
10−9 [33], respectively, we obtain weaker bounds:
gproton ≤ 9.5 × 10−8gDirac and gmuon ≤ 4.5 × 10−5gDirac.
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