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We propose a continuous real space renormalization group transformation based on gradient flow,
allowing for a numerical study of renormalization without the need for costly ensemble matching. We apply
our technique in a pilot study of SU(3) gauge theory with Nf ¼ 12 fermions in the fundamental
representation, finding the mass anomalous dimension to be γm ¼ 0.23ð6Þ, consistent with other
perturbative and lattice estimates. We also present the first lattice calculation of the nucleon anomalous
dimension in this theory, finding γN ¼ 0.05ð5Þ.
DOI: 10.1103/PhysRevLett.121.201601

Introduction.—Conformal field theories describe a num-
ber of important physical systems. In lower dimensions, they
describe the critical behavior of a wide array of models. The
use of conformal field theories in four dimensions ranges
from composite Higgs models to N ¼ 4 super-Yang-Mills
theory, and through the AdS=CFT correspondence to the
definition of quantum gravity and beyond.
Nonperturbative techniques to obtain the spectrum of

operator dimensions are essential to study the full range of
strongly-coupled conformal field theories. These include the
conformal bootstrap [1–3], radial quantization [4–6], and
Monte Carlo renormalization group (MCRG) [7–9].MCRG
in particular is exact and nonperturbative, but conventional
approaches are limited by the requirement of matching
ensembles over large, discrete changes in scale.
Gradient flow (GF) [10,11] is a continuous, invertible

field transformation that systematically suppresses high
momentum modes, allowing for the definition of renor-
malized quantities nonperturbatively. Formally, it is similar
to the coarse-graining step of momentum space RG trans-
formations, such as Wilson and Kogut’s “incomplete”
integration as described in Ref. [12], Polchinski’s “smooth
cutoff” [13], and the coarse-graining function of functional
RG [14,15]. Analogously, in position space the flowed
fields could be considered as RG blocked fields. Significant
recent work has gone into exploring the connections
between GF and RG [16–22].
Despite these similarities, GF itself is not an RG trans-

formation, as it lacks two essential steps that are necessary

for the existence of a fixed point (FP): 1. GF does not
include a rescaling that would restore the momentum cutoff
to its original value. 2. Linear GF, like the fermion flow [23]
or the free scalar flow [18–20] does not uniquely fix the
normalization of the field. Linear RG transformations do
not have a FP unless the blocked fields are normalized by
bη=2, where b is the scale change and η=2 is the anomalous
dimension of the field.
RG flow may also be thought of as a map on the “theory

space” of couplings gðμÞ such that the combination of a
dilatation (scale transformation) by scale factor b and a
rescaling of the couplings gðμÞ → gðbμÞ leaves all physical
predictions of the theory unchanged [12,24]. The required
dilatation is the first step above. The second step is simply
the requirement that the normalization of the kinetic terms
for all fields should be unchanged.
In numerical simulations, the renormalization of the

fields can be included by explicit calculation of the wave
function renormalization using an exactly conserved
current. We show that by considering correlation functions
at long distances the dilatation transformation can be
incorporated without an explicit rescaling step.
The use of GF provides several advantages over conven-

tional MCRG techniques. Since GF is a continuous trans-
formation, the corresponding RG can also be continuous,
greatly improving the predictive power of the method and
avoiding the costly matching over discrete scale changes.
In addition, GF gives a straightforward definition of
blocked lattice fermion fields that allows the evaluation
of the blocked fermion correlation functions without
requiring the knowledge of the blocked action. This opens
a greater range of theories to be studied.
In the literature on continuum RG, “gradient flow” often

has a specific connotation in terms of the strongest form of
the c-theorem conjecture [25], namely, that RG flow is
precisely the gradient flow of the c function. We do not
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claim any result on the c theorem here. For our purposes,
we only require a flow that suppresses high-momentum
modes of quantum fields. Changing the flow definition
changes the renormalization scheme.
In this letter, we show how continuous flow can be used

to define an RG transformation, focusing on the use of
flowed correlation functions at large separation to extract
anomalous dimensions. We then apply our method to
determine the anomalous dimension of various fermionic
operators in SU(3) gauge theory with 12 fundamental
flavors. While the infrared properties of this model are
still controversial [26–32] our analysis is consistent with
the existence of an infrared fixed point in the lattice theory
with staggered fermions—although we expect the proposed
method to predict the scale-dependent renormalization
factors even in the absence of such a fixed point. We find
the mass anomalous dimension as γm ¼ 0.23ð6Þ and the
anomalous dimension of the nucleon as γN ¼ 0.05ð5Þ—
the first nonperturbative prediction of this quantity.
These values are consistent both with other perturbative
[33–36] and numerical [27,28,37,38] predictions.
Gradient flow and RG transformations.—In this section

we denote all fields (scalar, fermion, or gauge) by ϕ and the
corresponding gradient-flowed fields by ϕt, where t is
the dimensionless flow parameter. The specific form of the
flow is not important; we require only that it suppresses
high momentum modes above Λ0=

ffiffi
t

p
, where Λ0 is the

cutoff scale, for a lattice cutoff Λ0 ∼ 1=a, where a is the
lattice spacing. The identification of

ffiffi
t

p
with the smearing

range corresponds to the conventional definition of gradient
flow [39].
To begin with, we assume the existence of an IR-

conformal (critical) FP in the theory to be studied.
Working in the basin of attraction, the fixed point can
be characterized by a set of scaling fields with irrelevant
couplings we denote generally as g. We also include a
relevant coupling m that breaks the conformal symmetry,
though at the end we will setm ¼ 0 and study the system at
criticality. The couplings g and m are defined to vanish at
the FP.
We consider an arbitrary local operator projected to zero

spatial momentum on time slice x0, Oðx0Þ ¼
R
dxOðϕ; xÞ.

Under an RG transformation that changes the lattice cutoff
as a → a0 ¼ ba, b > 1, the couplings transform with their
corresponding scaling dimensions, and the two-point cor-
relation function of O at distance x0 ≫ a0 ¼ ba transforms
as [40,41]

hOð0ÞOðx0Þig;m ¼ b−2ΔOhOð0ÞOðxbÞig0;m0 ; ð1Þ

where all physical quantities (except the lattice cutoff a0) on
the right-hand side have been rescaled by b, so that
xb ≡ x0=b. Here, ΔO ¼ dO þ γO is the scaling dimension
of the operator O, which is divided into its canonical
dimension dO and anomalous dimension γO.

The RG-transformed correlator on the right-hand side of
Eq. (1) is evaluated with respect to the action with the
transformed couplings g0 and m0. Rather than attempting to
study the RG flow of the action itself directly, we may use
the principle of MCRG [7], which states that RG trans-
formation and the generation of a Monte Carlo ensemble
from the action are commuting operations. In other words,
we can RG transform the ensemble of fields generated
using the original action, rather than attempting to construct
the new action explicitly, i.e.,

hOð0ÞOðxbÞig0;m0 ¼ hObð0ÞObðxbÞig;m; ð2Þ

where Ob is the same local operator constructed from the
blocked fields Φb rather than the original ϕ. We emphasize
that the RG arguments leading to Eq. (1) are valid only
when the blocked operators are well separated and the
blocked fields making up Obð0Þ and ObðxbÞ do not
overlap.
We define the blocked fields Φb in terms of flowed

fields as

ΦbðxbÞ≡ bΔϕϕtðbxbÞ; ð3Þ

where the exponent Δϕ ¼ dϕ þ η=2 is fixed by requiring
the ϕ two-point correlator at criticality, which (in infinite
volume) takes the form of a power law in x0, to be
unchanged by RG transformation as described by
Eq. (1); i.e., η=2 is the anomalous dimension of the field
ϕ. At this point the flow time is independent of the RG
scale change but it is natural to keep the two related
asymptotically as

ffiffi
t

p
∝ b, since a substantial mismatch

between blocking radius and scale change could distort the
RG transformation and obstruct the existence of an RG
fixed point; this is known to be the case for decimation,
which corresponds to

ffiffi
t

p
≪ b.

Combining Eqs. (1) and (2) with Eq. (3) and the
identification of b yields the result

hOtð0ÞOtðx0Þi
hOð0ÞOðx0Þi

¼ b2ΔO−2nOΔϕ ∝ tnd;OþγO−nOη=2; ð4Þ

whereOt ¼ OðϕtÞ is the operator in terms of the GF fields,
nO is the number of ϕ fields in operator O, and nd;O ¼
dO − nOdϕ is the number of derivatives appearing inO. We
emphasize that the flowed and unflowed operators are
evaluated at the same lattice distance x0=a; the trans-
formation of the lattice cutoff a → ba is exactly compen-
sated by the rescaling step of the RG transformation.
Equation (4) allows the determination of the anomalous

dimension of O directly from the flow-time dependence of
its correlation functions. However, it is sometimes numeri-
cally advantageous to compute expectation values with
only a single flowed operator; for example, if ϕ is a fermion
then the costly “adjoint flow” [23] is required to compute
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hOtð0ÞOtðx0Þi. The flowed operator Otðx0Þ is a combina-
tion of local fields in the vicinity of x0 with coefficients that
depend on the flow time,

Otðx0Þ ∼
X
k

ckðtÞOðx0 þ δxkÞ; ð5Þ

where the coefficients ckðtÞ are exponentially suppressed
for distances beyond the smearing radius of the flow ∝

ffiffi
t

p
.

The condition x0 ≫ ba ∝ a
ffiffi
t

p
required for Eq. (1) thus

implies that δxk ≪ x0. Expanding in a
ffiffi
t

p
=x0 and using

translation invariance, it is straightforward to show that

hOð0ÞOtðx0Þi
hOð0ÞOðx0Þi

∝ tnd;O=2þγO=2−nOη=4 þOða ffiffi
t

p
=x0Þ; ð6Þ

where the dependence on t is the square root of the
dependence in Eq. (4).
We can use Eq. (6) to determine the field anomalous

dimension η, as long as we can identify some local operator
A which is protected from renormalization by a symmetry
of the theory, and therefore has γA ¼ 0. Once η is
determined, any other anomalous dimension can be pre-
dicted. Alternatively, we may construct a double ratio of the
form

ROðt; x0Þ ¼
hOð0ÞOtðx0Þi
hOð0ÞOðx0Þi

� hAð0ÞAðx0Þi
hAð0ÞAtðx0Þi

�
nO=nA

¼ bΔO−ðnO=nAÞdA ;

∝ tγO=2þδ=2; x0 ≫ a
ffiffi
t

p
; ð7Þ

which cancels the anomalous dimension η directly, leaving
only the desired anomalous dimension γO and some
possible residual dependence on the canonical dimensions
of O and A through δ≡ dO − ðnO=nAÞdA. If the operators
contain no derivatives then δ ¼ 0; this will be the case for
all operators we consider in our numerical study.
Equation (7) is valid only on the critical m ¼ 0 surface

and at sufficiently large flow times such that the linear basin
of attraction of the IR-stable fixed point has been reached.
Otherwise, we expect the predicted γO from Eq. (7) to show
additional dependence on t coming from irrelevant oper-
ators. In practice, the flow time t which can be reached is
limited by the finite lattice volume.
Finite volume corrections.—Consider the ratio

Rðg0; t; LÞ on lattice size L at flow time t starting at bare
coupling g0, and compare it to the ratio on lattice size sL at
flow time s2t starting at bare coupling g. In the basin of
attraction of the FP, the coupling g0 can be adjusted so that
the two flows end at the same physical point, so that Eq. (7)
now predicts

ROðg0; t; LÞ ¼ s−γOROðg; s2t; sLÞ: ð8Þ

Applying this relation twice and expanding the right-hand
side around g,

ROðg; s2t; s2LÞ ¼ ROðg; s2t; sLÞ þ sγO(ROðg; t; sLÞ
−ROðg; t; LÞ)þOðg0 − gÞ: ð9Þ

Equation (9) predicts the ratioRðgÞ on volume s2L in terms
of ratios on smaller volumes, plus a correction term
Oðg0 − gÞ. We will absorb the latter term as a g-dependent
correction and assume that the ratio on s2L volumes
approximates infinite volume. Assuming that conformal
symmetry is broken only by the finite number of spatial
lattice points L, we expect finite volume corrections to
depend only on the dimensionless ratio b=L, and thus on
the flow time as

ffiffi
t

p
=L.

Details of lattice simulations.—To test our proposed
method numerically, we carry out a pilot study of SU(3)
gauge theory with Nf ¼ 12 degenerate fermions in the
fundamental representation. We use a set of gauge con-
figurations that were originally generated for finite-size
study of this system [27] using a plaquette gauge action and
nHYP-smeared staggered fermions [42,43]. Further details
on the lattice action can be found in Refs. [27,37,44,45].
We consider five values of the bare gauge coupling β ¼ 4.0,
5.0, 5.5, 5.75, and 6.0, analyzing 46 and 31 configurations
on lattice volumes of 243 × 48 and 323 × 64, respectively.
The fermion mass is set to m ¼ 0.002 × 5, small enough
that we expect the breaking of scale invariance to be
dominated by the finite spatial extent L.
We consider only fermionic operators, and use the axial

charge A4 for our conserved operator A. Since staggered
fermions have a remnant U(1) symmetry, it is straightfor-
ward to construct a conserved axial charge operator with
ZA ¼ 1 [46]. We use on-site staggered operators for the
pseudoscalar, vector, and nucleon, and a 1-link operator for
the axial charge states. Our individual correlators are
consistent with simple exponential decay, although we
cannot rule out a functional dependence that includes a
Yukawa-like power law correction [47].
Following Ref. [23], we adopt nonlinear Wilson flow for

the gauge fields and linear fermion flow. We consider 10
flow time values between 1.0 ≤ t=a2 ≤ 7.0 (note that the
flow range is

ffiffiffiffi
8t

p
.) The strong correlations in GF lead to

very small statistical errors in the flow-time dependence.
Analysis.—In the following, we work in lattice units. The

ratio given in Eq. (7) should be independent of x0 at large
x0, as long as the operator O has well-defined quantum
numbers. At distances comparable to the flow range,
x0 ≲

ffiffiffiffi
8t

p
, the flowed operators overlap and the ratios

could have nontrivial and nonuniversal structure. Since
we are using staggered fermions where the action has
oscillating phase factors, in the small x0 region we observe
significant oscillation, as shown in Fig. 1 for the γ5
pseudoscalar operator that does not have a partner in the
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channel. The width of the oscillation is about 2
ffiffiffiffi
8t

p
, after

which a stable plateau develops. The decrease in the value
of the plateau as the flow time increases predicts the
anomalous dimension of the pseudoscalar operator.
We work directly with the ratio RðtÞ of Eq. (7), and do

not attempt to extrapolate the fermion field exponent η
[obtained from usingA in Eq. (6)] to the infrared limit, as it
shows much stronger finite-volume and bare coupling
dependence than the full operator ratios. At fixed t and
β we typically find η≲ 0.1.
As a consistency check we consider the vector operator,

but find large systematic effects due to oscillation; although
we cannot quote a precise extrapolated value, we generally
find the associated anomalous dimension consistent with
zero as expected.
We predict the anomalous dimension as a function of t

by comparing the ratios at consecutive ðt1; t2Þ flow time
values

γOðβ; t̄; LÞ ¼
log½ROðt1; β; LÞ=ROðt2; β; LÞ�

logð ffiffiffiffi
t1

p
=

ffiffiffiffi
t2

p Þ ; ð10Þ

where t̄ ¼ ðt1 þ t2Þ=2. The mass anomalous dimension is
predicted by considering the pseudoscalar operator, recall-
ing that γm ¼ −γS ¼ −γPS. We estimate the finite volume
corrections by Eq. (9), estimating γm iteratively. We have
numerical data on 243 × 48 and 323 × 64 volumes so
s ¼ 32=24, and Eq. (9) increases the effective volume
to 42.66.
In Fig. 2 we show the infinite volume estimated γm as a

function of μ≡ 1=
ffiffiffiffi
8t̄

p
. There is significant dependence on

the bare gauge coupling β and also on the flow time t, as
expected in a slowly running system. We extrapolate to the
t → ∞ limit as

γmðβ; tÞ ¼ γ0 þ cβtα1 þ dβtα2 ; ð11Þ

motivated by the expectation that the correction terms
should be due to the slowly evolving irrelevant couplings,
associated with higher-dimensional operators that can mix
with the operator of interest. Based on Refs. [27,37,45] we
expect the FP to be closest to the β ¼ 5.5–6.0 range, so that
the dependence on β should be weakest in this range.
We perform a combined fit versus β and t using common

γ0, α1 and α2, but allowing β dependent coefficients cβ and
dβ. The central fit, as shown in Fig. 2, omits β ¼ 4.0 and
discards the smallest and two largest t values, predicting
γm ¼ 0.23. The other exponents obtained are α1 ¼
−0.25ð14Þ and α2 ¼ −2.37ð29Þ; these likely include some
remaining finite-volume effects and thus should not cor-
respond directly to irrelevant operator dimensions.
We vary the analysis by dropping small and large t

values, and also including or discarding β ¼ 4.0 and
β ¼ 6.0 from the fit; from these variations we estimate a
systematic error of 0.04 on γm. As an additional cross-
check on our finite volume correction procedure, we
perform an alternative analysis in which a global fit to
ROðtÞ is carried out assuming power-law dependence on
the dimensionless ratio

ffiffiffiffi
8t

p
=L. This gives a central value of

0.27. We conservatively take the difference in central
values as an estimate of our finite-volume extrapolation
systematic, giving the final prediction

γm ¼ 0.23ð6Þ; ð12Þ

combining the systematic errors in quadrature.
A significant advantage of this technique is that more

complicated composite operators can be dealt with in a
straightforward way. To demonstrate this, we consider the
nucleon operator with our method. The nucleon showsmore
significant oscillations in the ratio RN , continuing into the
plateau region; we account for the oscillations by averaging
over adjacent pairs of x0 values to obtain RN . The oscil-
lations at large x0maybe due to the coupling of the staggered
nucleon operator to other wrong-parity states; numerically
the coupling is small in the ratio. We define the nucleon

FIG. 1. Dependence of the correlator ratio RP on source-sink
separation x0 and flow scale

ffiffiffiffi
8t

p
. For each value of

ffiffiffiffi
8t

p
, a stable

plateau in RP is seen for x0 ≳ 2
ffiffiffiffi
8t

p
. The results shown here are

on 323 × 64 volumes at β ¼ 5.75.

FIG. 2. Extrapolation of the mass anomalous dimension γm to
the infrared limit, as described in the text.
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anomalous dimension with an additional negative sign,
γN ≡ ΔN − dN , to match the convention of Refs. [34,36].
Repeating the full analysis as described yields Fig. 3 and
predicts

γN ¼ 0.05ð5Þ; ð13Þ

where the finite-volume systematic error is estimated to be
0.03 and the remaining combined systematic and statistical
error is 0.04.
Conclusion.—We have shown that gradient flow (GF)

can be used to study renormalization group (RG) trans-
formations directly, with no need for costly ensemble
matching, yielding significantly higher statistical precision
and lower cost than conventional MCRG techniques. The
use of correlation functions at distances x0 ≫

ffiffi
t

p
is crucial

for our construction, as is the use of a conserved current to
explicitly account for wave function renormalization under
RG, without which the GF transformation does not have a
fixed point. We have worked effectively at zero fermion
mass, but it would be interesting to consider whether
extrapolation from m ≠ 0 in the vicinity of a fixed point
would be practical in future work. There are many
possibilities for future studies of other conformal theories
using this technique, such asN ¼ 4 super-Yang-Mills [48]
or ϕ4 theory in three dimensions.
Finally, it would be very interesting if our derivation

could be generalized to QCD-like theories in which there is
no IR-stable fixed point to work around. Such an extension
could provide a new and general method for operator
renormalization in lattice QCD.
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