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We investigate how a lepton asymmetry impacts the cosmic trajectory in the QCD phase diagram.
We study the evolution of chemical potentials during the QCD epoch of the early Universe using
susceptibilities from lattice QCD to interpolate between an ideal quark gas and an ideal hadron resonance
gas. The lepton asymmetry affects the evolution of all chemical potentials. The standard cosmic trajectory
is obtained assuming tiny lepton and baryon asymmetries. For larger lepton asymmetry, the charge
chemical potential exceeds the baryon chemical potential before pion annihilation.
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The excess of matter over antimatter in the Universe is
one of the major puzzles of particle physics and cosmology.
This asymmetry can be specified with respect to the con-
served charges: baryon number B, lepton number L, and
electric chargeQ. The baryon asymmetry, defined as the net
baryon number density per entropy density, b ¼ nB=s, is
tightly constrained to beb ¼ ð8.60� 0.06Þ × 10−11 inferred
from [1]. However, the standard model of particle physics
(SM) fails to explain this asymmetry [2].
The lepton asymmetry l ¼ nL=s is a key parameter to

understand the origin of the matter-antimatter asymmetry.
The idea of leptogenesis [3] is to create a primeval lepton
asymmetry, which due to electroweak sphaleron processes
is partly converted to a baryon asymmetry. In the SM, the
prediction in the case of efficient sphaleron processes is
l ¼ −ð51=28Þb [4]. However, there exist also models that
predict a large lepton asymmetry nowadays, i.e., jlj ≫ b,
and there is no preference for either sign of l. In general,
in these models sphaleron processes are either suppressed
[5–7] or the lepton asymmetry is produced after sphaleron
processes cease to be efficient [8].
Observationally, the lepton asymmetry is only weakly

constrained. While the charge neutrality of the Universe
(see [9] for an upper limit) links the asymmetry in charged
leptons to the tiny baryon asymmetry, a much larger lepton
asymmetry could reside in a large neutrino asymmetry today.
Constraints on the lepton asymmetry can be obtained from
the cosmic microwave background jlj < 0.012 (95% C.L.)
[10] and are in concordance with big bang nucleosynthesis
analyses [11].

In this Letter, we investigate how the cosmic trajectory
through the QCD phase diagram is influenced by the
unknown lepton asymmetry. It has been shown by means
of lattice QCD that the QCD transition is a crossover at
small chemical potentials (see [12,13] and, e.g., [14] for a
review). A pseudocritical temperature can be defined and is
measured on the lattice to be TQCD ≃ 154ð9Þ MeV [15]
[TQCD ≃ 147ð2Þ–165ð5Þ MeV [16]]. For vanishing temper-
atures and large baryon chemical potential μB > mN
effective models of QCD, like the Nambu–Jona-Lasinio
model, predict a first-order chiral transition. It is speculated
that there exists a critical line in the ðμB; TÞ plane of the
QCD phase diagram describing a first-order phase tran-
sition [17]. This line is expected to end in a second-order
critical point [18,19]. Because of the infamous sign
problem in lattice QCD, calculations for nonvanishing
chemical potentials are very difficult [19–22]: with nonzero
chemical potentials, the Euclidean action in the path
integral for the partition sum becomes complex. Then
the exponential of the action is not positive definite.
This invalidates a probabilistic interpretation of the path
integral, and the usual numerical techniques of lattice QCD
are no longer applicable.
We present a novel technique of determining the evolution

of chemical potentials for arbitrary lepton asymmetries
throughout the QCD epoch by using lattice QCD suscep-
tibilities. First calculations of the cosmic trajectory in the
QCD phase diagram have been performed in [23]. In [24] the
evolution of chemical potentials at large lepton asymmetries
has been studied in the approximation of an ideal quark gas
and of a hadron resonance gas (HRG). In the HRG, the QCD
sector is approximated as an ideal gas of hadron resonances.
Here we extend and advance the approach of [24] in the
following perspective: for the first time, we determine the
cosmic trajectory accounting properly for strong interaction
effects close toTQCD by using latticeQCDdata for conserved
charge susceptibilities. In the context of sterile neutrino
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production, approximate relations between lepton asymme-
tries and chemical potentials have been studied in terms
of susceptibilities in [25,26]. Furthermore, we improve the
calculation of the entropy density in [24] by including
chemical potentials of all relevant particle species, and we
take a larger number of hadron resonances into account.
The trajectory of the early Universe, for conserved B, Q,

and L, in the phase diagram of strongly interacting matter
is commonly assumed to pass TQCD at vanishing chemical
potentials and to proceed to μB ¼ mN and μQ ≈ μL ≈ 0 at
me ≪ T ≲mN . In this scenario, it is assumed that the
lepton asymmetry is tiny, l ¼ OðbÞ. Below we refer to this
as the standard scenario. Our results for l ¼ −ð51=28Þb
present (to our knowledge) the first precise calculation of
the standard cosmic trajectory.
It has already been shown that for jlj ≫ b the baryon and

charge chemical potential becomes on the order of the
lepton asymmetry μB ∼ μQ ∼ lT at T ≳ TQCD [24,27].
Assuming an overall electric charge neutrality and a fixed
b, a lepton asymmetry in the electrically charged leptons
induces an electric charge asymmetry in the quark sector,
which induces quark chemical potentials. As quarks
carry not only electric charge but also baryon number,
quark chemical potentials induce nonvanishing charge and
baryon chemical potentials. With a sufficiently large
primordial lepton asymmetry, the cosmic trajectory could
be shifted to higher charge and baryon chemical potential
and thus the order of the QCD transition in the early
Universe might be changed. This could have observable
consequences via the production of relics [28,29], such as
stochastic gravitational waves, which could be measured by
pulsar timing arrays [30]. Additionally, for charge chemical
potential larger than the pion mass mπ , pion condensation
might occur in the early Universe [31,32]. Understanding
the impact of a lepton asymmetry on the evolution of the
Universe at various epochs is therefore of crucial importance.
For the epoch of the cosmic QCD transition, kinetic

and chemical equilibrium are excellent approximations.
The timescales of interest are the interaction rates and the
Hubble time, tH ¼ 1=H ≃ 10−5 s at TQCD, which is large
compared to the timescales of strong, electromagnetic, and
weak interactions.
Since neutrino oscillations, which take place after the

QCD epoch at Tosc ∼ 10 MeV [11,33,34], lead to a mixing
of all lepton flavors, the observational constraints hold for
the total lepton asymmetry l ¼ P

αlα, α ∈ fe; μ; τg. Thus,
for T > Tosc even larger but oppositely signed lepton flavor
asymmetries are consistent with observational constraints.
Note that sizable flavor asymmetries survive neutrino
oscillations dependent on the neutrino mixing angles and
the initial values of the lepton asymmetries and thus even
after neutrino oscillations it is possible to have lα ≠ l=3
[35–37]. In this Letter, we focus on equally distributed
lepton flavor asymmetries le ¼ lμ ¼ lτ ¼ l=3.
After the electroweak transition at TEW ∼ 100 GeV and

for T > Tosc, there are five conserved charges in the early

Universe, B, Q, and the three lepton flavor numbers Lα, to
which corresponding chemical potentials μB, μQ, and μLα

can be assigned, respectively. Note that, in contrast to
relativistic heavy ion collisions that also probe the QCD
phase diagram, individual quark flavors like strangeness are
not conserved due to electroweak processes.
Assuming a homogeneous Universe, we obtain five

conserved quantities: nLα
=s ¼ lα, nB=s ¼ b, and

nQ=s ¼ q. The entropy density s fulfills the relation
TsðT; μÞ ¼ ϵðT; μÞ þ pðT; μÞ −P

aμanaðT; μÞ, with ϵ the
total energy density, p the total pressure, and the sum over
conserved charges a ∈ fB;Q; Lαg. We fix b ¼ 8.6 × 10−11

and q ¼ 0 in agreement with observations. The three lepton
flavor asymmetries lα remain free parameters.
The net number density of a particle species is defined as

the number density of a particle minus the density of its
antiparticle. Assuming chemical equilibrium, we find
relations between the chemical potentials of different
particle species. Since photons and gluons carry no con-
served charges, their chemical potentials are zero. It follows
that the chemical potentials of particles and antiparticles
are equal in magnitude and opposite in sign, i.e., μi ¼ −μī.
In kinetic and chemical equilibrium for an ideal gas, we can
express the net number densities by the integral over the
Fermi-Dirac (Bose-Einstein) distribution for fermions
(bosons) as

ni ¼
gi
2π2

Z
∞

mi

dEE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

i

q

×

�
1

eðE−μiÞ=T � 1
−

1

eðEþμiÞ=T � 1

�

; ð1Þ

for a particle with mass mi, chemical potential μi, and with
the þ for fermions (− for bosons). The number of degrees
of freedom gi counts particles and antiparticles separately,
i.e., g ¼ 1 for neutrinos, g ¼ 2 for electrically charged
leptons, and g ¼ 6 for quarks. In this approximation, the
five local conservation laws can be written in terms of the
particle net number densities,

lαs ¼ nα þ nνα ; ð2aÞ

bs ¼
X

i

Bini; ð2bÞ

qs ¼
X

i

Qini; ð2cÞ

with Bi the baryon number and Qi the electric charge of
particle species i.
We can express the conserved charge chemical potentials

in terms of particle chemical potentials,

μLα
¼ μνα ; ð3Þ
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μQ ¼ μνα − μα ¼ μu − μd; ð4Þ

μB ¼ μu þ 2μd; ð5Þ

and at low temperatures

μQ ¼ μπ ¼ μp − μn; ð6Þ

μB ¼ μn; ð7Þ

with μπ , μp, and μn the chemical potential of pions, protons,
and neutrons, respectively, and similar for other hadrons
and their resonances.
In order to take into account strong interactions between

quarks and gluons close to TQCD we expand the QCD
pressure in a Taylor series in the chemical potentials up to
second order,

pQCDðT; μÞ ¼ pQCDðT; 0Þ þ 1

2
μaχabðTÞμb þOðμ4Þ; ð8Þ

with an implicit sum over a, b ∈ fB;Qg here and in the
following. The susceptibilities are defined by

χabðTÞ ¼
∂2pQCDðT; μÞ

∂μa∂μb
�
�
�
�
μ¼0

¼ χbaðTÞ: ð9Þ

Such an expansion is also used in lattice QCD for
circumventing the sign problem (cf. [15,38]). The con-
served charge densities follow as

naðT; μÞ ¼
∂pQCDðT; μÞ

∂μa ¼ χabμb þOðμ3Þ: ð10Þ

The entropy density of the strongly interacting matter
satisfies (cf. [39])

TsQCDðT; μÞ ¼ T
∂pQCD

∂T −
X

a

μa
∂pQCD

∂μa ; ð11Þ

and with Eqs. (8) and (10) it follows that

sQCDðT; μÞ − sQCDðT; 0Þ ¼
�
1

2

dχab
dT

−
1

T
χab

�

μaμb: ð12Þ

Only quarks contribute to the baryon asymmetry
bs ¼ nQCDB . The contribution to the electric charge can
be divided into a part arising from the leptons nlepQ and one

by quarks nQCDQ ∶ qs ¼ 0 ¼ nQCDQ þ nlepQ . With the QCD net
number densities given by Eq. (10), our system of equa-
tions becomes

lαs ¼ nα þ nνα ; ð13aÞ

bs ¼ μBχBB þ μQχBQ; ð13bÞ

qs ¼ μQχQQ þ μBχBQ −
X

α

nα: ð13cÞ

For given temperature and lepton asymmetry l, we
solve Eqs. (2a)–(2c) or, respectively, Eqs. (13a)–(13c)
for (i) the ideal quark gas (T ≥ 100 MeV), (ii) lattice
QCD susceptibilities (250 ≥ T ≥ 150 MeV), and (iii) HRG
(250 ≥ T ≥ 10 MeV).
In order to solve the system of coupled integral equations

we modified the C code used in [24] to take into account
strong interactions between quarks according to Eqs. (12)
and (13a)–(13c). We use continuum extrapolated lattice
QCD susceptibilities for a 2þ 1 flavor system [15],
i.e., including the up, down, and strange quark, and for
a 2þ 1þ 1 flavor system (not continuum extrapolated,
Nτ ¼ 8) [40,41], i.e., including also the charm quark,
and the numerical temperature derivatives thereof. For
the HRG we consider hadron resonances up to mΛð2350Þ≈
2350 MeV ∼ 15TQCD, using particle properties according
to the summary tables in [42]. Finally, we included
chemical potentials in the calculation of the entropy density
in all three temperature regimes (i)–(iii) and took
sQCDðT; 0Þ by [43]. Integrations like in Eq. (1) are
performed using Gauss-Laguerre quadrature and the sys-
tem of equations is solved by using Broydn’s method [44].
Deviations from the results of [24] are due to those improve-
ments andminormistakes in the original code.We are free to
choose arbitrarily five independent chemical potentials as
free parameters according toEqs. (3)–(6) in order to solve our
system of integral equations. However, one has to carefully
choose them such that they are of different size to be able
to obtain all particle chemical potentials without running
into numerical problems. This is most important for the
HRG at low temperatures where μQ ¼ μp − μn and μn ≈ μp.
A good choice is fμQ; μB; μLe

; μLμ
; μLτ

g.
Figure 1 shows the results for the temperature evolution

of μB (top), −μQ (middle), and −μLe
(bottom) for different

values of the lepton asymmetry. The evolution of μLμ
and

μLτ
is not shown here, as they are of similar size as μLe

.
However, despite the fact that all lepton asymmetries lα are
assumed to be equal, the three lepton flavor chemical
potentials evolve differently due to the lepton masses. We
can see in Fig. 1 that, talking about absolute values, a larger
total lepton asymmetry induces larger chemical potentials.
The chemical potentials are proportional to l. This is true
for l > OðbÞ. For lepton asymmetries l≲OðbÞ the evolu-
tion of all chemical potentials is determined by the baryon
asymmetry b and the contribution of l is negligible.
The chemical potentials obtained using lattice QCD

susceptibilities connect the ideal quark gas with the
HRG approximation quite well. Especially for μQ they
almost smoothly connect the two approximations at high
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and low temperature. For μB, however, the results with
2þ 1 flavor lattice QCD susceptibilities do not connect the
two approximations smoothly for larger lepton asymme-
tries. At low temperatures there is a small gap between the
lattice QCD and HRG results. At high temperatures the
lattice QCD results do not smoothly converge to the ideal
quark gas, but they intersect in a single point for jlj≳ 10−8.
Taking into account the charm quark by using 2þ 1þ 1
flavor lattice QCD susceptibilities, they seem to converge
to the ideal quark gas at high temperatures [see Fig. 1 (top)].
The uncertainty of the lattice QCD results is on the order of
the point sizes in Figs. 1 and 2.
An important feature in the evolution of μB is that, for

small temperatures T ≲mπ=3 ≈ 46 MeV, after the annihi-
lation of pions (and muons), μB no longer depends on the
value of l and approaches the nucleon massmN ∼ 1 GeV at
low temperatures (see Fig. 1).
For l ¼ −ð51=28Þb we obtain the standard cosmic

trajectory. The reader should keep in mind that the cosmic
trajectory follows a path in the 5þ 1-dimensional phase
diagram. In Fig. 1 we show two-dimensional projections of
the phase diagram.
It can also be seen that, for large lepton asymmetries

l > OðbÞ (see Figs. 1 and 2), the electric charge chemical
potential becomes larger than the baryon chemical potential
at nonvanishing temperature. This can be understood as
follows. The electric charges of the three light quarks add
up to zero. If their masses were degenerate (and heavier
quarks are neglected), the susceptibility χBQ would vanish,
so that no μB is induced. Thus, for T ≳mstrange, μB remains
small. Furthermore, this is why the charm quark is
important here, despite its large mass.

FIG. 1. Temperature evolution of chemical potentials for differ-
ent negative total lepton asymmetries l. (Top) Baryon chemical
potential μB. (Middle) Electric charge chemical potential −μQ.
(Bottom) Electron lepton flavor chemical potential −μLe

.
Continuous lines for high temperatures are results for the ideal
quark gas, for low temperatures for the HRG. The symbols
(circle) and (triangle) indicate results obtained by using 2þ 1 and
2þ 1þ 1 flavor lattice QCD susceptibilities, respectively. The
magnitude of the lepton asymmetry increases from left to right.
The pseudocritical temperature TQCD ≈ 154 MeV is displayed by
a horizontal dotted line. The standard cosmic trajectory of the
early Universe is given by l ¼ −ð51=28Þb.

B Q

FIG. 2. Temperature evolution of baryon chemical potential μB
and electric charge chemical potential μQ for both signs of a large
lepton asymmetry. Continuous and dashed lines for high temper-
atures are results for the ideal quark gas, for low temperatures for the
HRG. The symbols (circle) and (triangle) indicate results obtained
by using 2þ 1 and 2þ 1þ 1 flavor lattice QCD susceptibilities,
respectively.
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Figure 2 shows the effect of the sign of a lepton
asymmetry. For positive l,μB is negative at high temperatures
and proceeds to the nucleon mass for lower temperatures.
For an equally distributed lepton asymmetry, we find that

for jlj ≳ 0.15 we get jμQj≳mπ , which might enable pion
condensation in the early Universe [31,32]. Such a large
lepton asymmetry would exceed the observational con-
straint by an order of magnitude. However, unequally
distributed lepton asymmetries would admit the possibility
of jμQj≳mπ , while satisfying jlj < 0.012.
In this Letter, we have studied the evolution of chemical

potentials as a function of temperature during the cosmic
QCD epoch and investigated its dependence on a lepton
asymmetry. For the first time, we used lattice QCD results
to properly account for the temperature regime around
TQCD in order to connect the approximations of an ideal
quark gas with the HRG. We provide the standard cosmic
trajectory through the 5þ 1-dimensional QCD phase dia-
gram for l ¼ −ð51=28Þb and, furthermore, the cosmic
trajectory in the presence of larger total lepton asymmetry.
There is no phase transition in the early Universe if the

cosmic trajectory in the QCD phase diagram is smooth at
all T. A kink in the trajectory would correspond to a
nonequilibrium first-order phase transition. We find that the
2þ 1þ 1 flavor lattice QCD susceptibilities allow us to
interpolate between the trajectories of the ideal quark and
HRG. We like to stress the importance of the charm quark
contribution in our results to obtain a smooth trajectory.
Unfortunately, no continuum extrapolated 2þ 1þ 1 flavor
lattice QCD susceptibilities were available at the time of
this study.
Gaps in our result for the cosmic trajectory, like in Fig. 2,

are artifacts of our approximations. Gaps between the lattice
QCD results and the ideal quark gas might be closed by
taking higher-order perturbative corrections into account.
It has been shown that these lead to smaller susceptibilities
than in the ideal gas approximation and to better agreement
with lattice QCD results [45]. Furthermore, it would be
helpful to have lattice QCD susceptibilities for lower and
higher temperatures available. The observed small gaps for
μB at low temperature between lattice QCD results and the
HRG approximation might then be closed. However, these
gaps might also be due to limitations of the HRG approxi-
mation to describe all thermodynamical aspects of QCD.
The current precision of lattice susceptibilities and the ideal
quark gas andHRGapproximations used in this Letter do not
allow us to make any statement on the nature of the cosmic
QCD transition.
Our results might be of crucial importance for a better

understanding of the evolution of the early Universe and
can be used in cosmic evolution calculations, e.g., in
predicting the abundance of various dark matter candidates.
Furthermore, our framework can be easily extended to
study the influence of additional particles beyond the SM
or resonances that are in kinetic and chemical equilibrium

with the SM particles. If the interactions of the new
particles violate some of the charge conservation, further
modifications of our framework are necessary. We would
like to emphasize that, before pion annihilation and for a
lepton asymmetry jlj≳ 10−8, the absolute value of the
electric charge chemical potential jμQj exceeds the baryon
chemical potential and therefore μQ might be more impor-
tant for the thermal history of the Universe than μB.
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