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Recent numerical advances in the field of strongly correlated electron systems allow the calculation of
the entanglement spectrum and entropies for interacting fermionic systems. An explicit determination of
the entanglement (modular) Hamiltonian has proven to be a considerably more difficult problem, and only
a few results are available. We introduce a technique to directly determine the entanglement Hamiltonian of
interacting fermionic models by means of auxiliary field quantumMonte Carlo simulations. We implement
our method on the one-dimensional Hubbard chain partitioned into two segments and on the Hubbard
two-leg ladder partitioned into two chains. In both cases, we study the evolution of the entanglement
Hamiltonian as a function of the physical temperature.
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Introduction.—The advent of quantum information tech-
niques in the field of condensed matter physics has boosted
a variety of new insights in old and new problems. In
particular, recent years have witnessed a rapidly growing
number of investigations of the quantum entanglement in
strongly correlated many-body systems [1,2]. The simplest
approach is the so-called bipartite entanglement, where
one divides a system into two parts, and a reduced density
matrix describing one of the subsystems is obtained by
tracing out the degrees of freedom of the other part.
Arguably, the most studied quantities in this context are
the entropies of the reduced density matrix, that is, the von
Neumann and especially the Renyi entropies. In the ground
state, the entanglement entropies generically satisfy an area
law; i.e., to leading order they are proportional to the area
between the two subsystems [3]. Among the many results,
it is well established that in a 1þ 1 conformal field theory
(CFT) corrections to the area law allow one to extract the
central charge of a model [4].
More information is contained in the entanglement

Hamiltonian, also known as the modular Hamiltonian,
which is defined as the negative logarithm of the reduced
density matrix. Its spectrum, dubbed as the “entanglement
spectrum,” has been shown to feature the edge physics of
topologically ordered phases such as the fractional quan-
tum Hall state [5] as well as of symmetry-protected
topological states of matter [2,6–9]. The entanglement
Hamiltonian also plays a central role in the first law of
entanglement [10]. Beside the entanglement spectrum and
the associated eigenvectors, the knowledge of the entan-
glement Hamiltonian opens the possibility of characteriz-
ing the reduced density matrix as a thermal state.
Furthermore, the expectation value of the entanglement
Hamiltonian equals the von Neumann entanglement
entropy, a key quantity which is generically not accessible
in numerical simulations of interacting models. Perhaps not

surprisingly, compared to the computation of entanglement
entropies, an explicit determination of the entanglement
Hamiltonian has proven to be a considerably more difficult
problem, and only a few solvable results are available.
Aside from limiting cases, such as in the absence of
interactions between the two subsystems, or the high-
temperature limit, where the entanglement Hamiltonian
can be easily determined, a particularly important result
concerns a relativistic field theory in flat d-dimensional
Minkowski space. For a bipartition of the space into two
semi-infinite subsystems with no corners, translationally
invariant along d − 1 dimensions, the entanglement
Hamiltonian is given by an integral of the energy-momentum
tensor, with a weight proportional to the distance x from the
boundary, leading to the Bisognano-Wichmann (BW) form
of the entanglement Hamiltonian [11,12]. In the presence of
additional conformal symmetry, a mapping of the semi-
infinite space to a ball allows one again to express the
entanglement Hamiltonian as an integral of the energy-
momentum tensor, with a space-dependent weight [13].
Reference [14] provides a recent review of the cases in
1þ 1 CFTwhere the entanglement Hamiltonian is obtained
as a weighted integral of the energy-momentum tensor.
Concerning condensed matter models on a lattice, the

entanglement Hamiltonian is exactly known only in a few
cases in one dimension and for a semi-infinite line sub-
system: the noncritical transverse-field Ising model and
the XXZ model in the massive phase [15,16]. Even in the
deceptively simple case of a free (nonrelativistic) fermionic
chain, the explicit computation of the entanglement
Hamiltonian for a segment proved to be a rather difficult
task. Although for a free fermionic system an exact formula
for the entanglement Hamiltonian is known [17], its explicit
calculation for a finite segment embedded in a chain has
eluded an analytical treatment so far. All lattice models
mentioned above share the property of being described by a
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CFT in the low-energy limit; hence the entanglement
Hamiltonian should attain the BW form, as indeed con-
firmed by the exact determination for the Ising and XXZ
models. Nevertheless, the entanglement Hamiltonian of the
free fermionic chain model contains intriguing corrections
to the CFT prediction which, remarkably, persist even in the
limit of a long segment [18]. In this context, recent studies
have provided numerical evidence in support of a lattice-
discretized BW form of the entanglement Hamiltonian for
various models in both one and two dimensions [19–23].
In this Letter, we introduce a numerically exact quantum

Monte Carlo (QMC) method which allows one to deter-
mine the entanglement Hamiltonian of interacting model of
fermions. The method is applied to the Hubbard chain and
to the two-leg Hubbard ladder, where we compute the one-
and two-body terms of the entanglement Hamiltonian as a
function of the temperature.
Method.—The method presented here is based on QMC

simulations using the auxiliary field algorithm [24–26],
whose basic formulation is reported in the following.
The Hamiltonian of the system Ĥ is separated into a
sum of a free part T̂ (containing, e.g., hopping terms) and
an interaction part V̂ (e.g., a Hubbard repulsion). At finite
inverse temperature β, one introduces a Trotter decom-
position of the density matrix operator expð−βĤÞ; in the
models considered here, we found important to choose a
symmetric decomposition expð−βĤÞ ¼ ½expð−ΔτT̂=2Þ×
expð−ΔτV̂Þ expð−ΔτT̂=2Þ�N þOðΔτ2Þ, with β ¼ NΔτ
thereby ensuring the Hermiticity of the imaginary time
propagation. Then, the interaction term is decoupled via a
Hubbard-Stratonovich (HS) decomposition, introducing
discrete HS fields fsg. The QMC simulation consists in
a stochastic sampling of the probability distribution PðfsgÞ
associated with the HS fields. The ALF package provides a
framework to program auxiliary field QMC simulations
[27]. The introduction of the HS transformation results in
a free fermionic system in the HS fields fsg. For such a
system, the reduced density matrix associated with a
subpartition A of the Hilbert space can be written exactly
in terms of the Green’s functions of the model, restricted to
the subsystem A [28]. One then arrives to the following
expression for the reduced density matrix ρ̂A [29]:

ρ̂A ¼
Z

dfsgPðfsgÞ det ½1 − GAðfsgÞ�e−â†i hijðfsgÞâj ;

hðfsgÞ ¼ log f½GAðfsgÞT �−1 − 1g; ð1Þ

where â†i and âi are the fermionic creation and annihilation
operators, respectively, in the subsystem A and i and j are
superindices labeling the possible states in A; here and in
the following, we assume an implicit summation over
repeated indices. The Green’s function matrix GAðfsgÞij ≡
hâ†i âji restricted to A, and at a given configuration of fsg, is
readily accessible in the auxiliary field algorithm, and it is

computed at a fixed imaginary-time slice. Equation (1) has
been exploited to compute the Renyi entropies [8,29–31].
Alternatively, Renyi entropies can be computed by means
of the replica trick, in fermionic [9,32–34] and bosonic [35]
as well as spin systems [36,37].
Equation (1) suggests to introduce a new measureePðfsgÞ ∝ PðfsgÞ det ½1 −GAðfsgÞ�, such that ρ̂A is

obtained as an expectation value over the measure ePðfsgÞ:
ρ̂A ∝ he−â†i hijðfsgÞâjieP: ð2Þ

As discussed in Supplemental Material [38], for the models
considered here it can be proven that PðfsgÞ as well as the
determinant det ½1 −GAðfsgÞ� are positive; hence, ePðfsgÞ
can be sampled by QMC simulations without a sign
problem. Furthermore, as proven in Ref. [38], the expo-
nential on the right-hand side of Eq. (2) admits an
expansion in normal-ordered many-body operators:

e−â
†
i hijðfsgÞâj ¼1þ â†i ðe−hðfsgÞ−1Þijâj

þ1

2
â†i â

†
kðe−hðfsgÞ−1Þijðe−hðfsgÞ−1Þklâlâjþ���:

ð3Þ

By inserting Eq. (3) in Eq. (2), we obtain an expansion of
ρ̂A as a sum of many-body operators, whose coefficients
can be sampled with a QMC simulation. This gives us an
unbiased QMC determination of ρ̂A.
In order to compute the entanglement Hamiltonian ĤE,

we first calculate the matrix elements M of ρ̂A. The matrix
N ≡ − logðMÞ represents, by definition, the matrix ele-
ments of ĤE. The entanglement Hamiltonian is then
obtained by determining the many-body operator whose
matrix elements are N. As for ρ̂A, we expand ĤE as a sum
of normal-ordered many-body operators:

ĤE ¼ − logðρ̂AÞ ¼ const − â†i tijâj þ â†i â
†
kUijklâlâj þ � � � :

ð4Þ

Crucially, it is possible to prove that, in order to compute
ĤE up to the two-body term â†i â

†
kUijklâlâj, it is sufficient to

truncate the sampling of ρ̂A to the two-body term, as done
on the right-hand side of Eq. (3). Under this condition, the
computational cost for sampling ρ̂A and determining ĤE
is only polynomial in the size of the subsystem A.
As discussed in Ref. [38], the expansion of Eqs. (3) and
(4) can be extended to any order in a sum of normal-ordered
many-body operators, whose coefficients could be, in
principle, sampled as to determine ρ̂A and ĤE beyond
the two-body terms. More technical details on this step of
the algorithm, implemented using the TRIQS [39] and
ARMADILLO [40,41] libraries, are reported in Ref. [38].
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Results.—We have applied the method outlined above to
the Hubbard chain and the Hubbard two-leg ladder at half
filling. The Hamiltonian for a Hubbard chain of length L is

Ĥ ¼ −t
XL
i¼1;σ

ĉ†i;σ ĉiþ1;σ þ ĉ†iþ1;σ ĉi;σ

þ U
XL
i¼1

�
n̂i;↑ −

1

2

��
n̂i;↓ −

1

2

�
; σ ¼ ↑;↓; ð5Þ

where by imposing periodic boundary conditions we
identify the lattice site Lþ 1 with 1. For this model, we
cut a subsystem A consisting in a segment of length La and
compute the one-body term tij defined in Eq. (4). In Fig. 1,
we show the resulting hopping terms ti;iþ1 between nearest-
neighbor lattice sites i and iþ 1, as a function of i and
for three inverse temperatures β ¼ 1, 2, and 3. At a high
temperature β ¼ 1, we find that ti;iþ1 attains the value of 1
for all lattice sites except those next to the boundary. In fact,
if the entanglement between A and B is locally restricted to
a region close to the boundaries, we expect that, away from
such a region, the subsystem A is substantially independent
of B, and, hence, locally, the entanglement Hamiltonian
should match βĤA, with ĤA the Hamiltonian of the model,
restricted to A. Accordingly, we observe a plateau with
ti;iþ1 ≃ βt ¼ β in the central part of the plots in Fig. 1,
whose extension shrinks as the temperature is lowered and
the entanglement grows. For β ¼ 3 only for a single site in
the middle we find ti;iþ1 ≃ β, whereas close to the boun-
daries we observe an approximately linear dependence of
ti;iþ1 on i, which grows (respectively, decreases) when
close to the left (respectively, right) boundary. Such a
behavior resembles qualitatively the case of a CFT [14]. For
the Hamiltonian parameters considered, the other hopping
terms in ĤE are negligible. For reasons expanded upon in

Ref. [38], it is technically hard, for this specific model, to
reach lower temperatures and especially to investigate
temperature scales below which the magnetic correlation
length is substantial. Nevertheless, as a comparison in order
to reproduce the results of Fig. 1 by exact diagonalization
(ED) techniques, one would need a full-spectrum diago-
nalization of a Hubbard chain with size L ¼ 32, a task far
beyond current ED capabilities.
In contrast, for the Hubbard model on a two-leg ladder,

we were able to reach low temperatures, approaching the
ground state. The Hamiltonian is defined as

Ĥ ¼ −t
X
i;σ

O¼A;B

ĉ†i;O;σ ĉiþ1;O;σ þ ĉ†iþ1;O;σ ĉi;σ

− t⊥
X
i;σ

ĉ†i;A;σ ĉi;B;σ þ ĉ†i;B;σ ĉi;A;σ

þ U
X

i;O¼A;B

�
n̂i;O;↑ −

1

2

��
n̂i;O;↓ −

1

2

�
; ð6Þ

where t and t⊥ indicate the intra- and interleg hopping
constants, respectively, and A and B label the two legs.
For this geometry, we trace out one leg and obtain a
translationally invariant entanglement Hamiltonian for a
single leg, i.e., defined on a chain geometry. At half filling,
the ground state of the model consists of a single fully
gapped phase [42,43]. The charge gap ΔC and the spin gap
ΔS, with ΔC > ΔS, are monotonically increasing with t⊥
and U. Gapped systems exhibit, as a function of the linear
size, a fast approach to the thermodynamic limit [44,45].
Figure 2 illustrates the temperature dependence of the

nearest-neighbor hopping term ti;iþ1 in ĤE for t⊥ ¼ 2 and
2.5 and fixed coupling constants t ¼ 1 and U ¼ 4. At high
temperatures, ti;iþ1 grows linearly with β, ti;iþ1 ≃ βt, in

FIG. 1. Nearest-neighbor hopping terms of the entanglement
Hamiltonian for a segment of La ¼ 8 sites in a Hubbard chain
of total length L ¼ 32, and parameters t ¼ 1 and U ¼ 4, as a
function of the temperature. The dashed line indicates the
expected values far from the boundary; see the main text.

FIG. 2. The same as Fig. 1, for a Hubbard two-leg ladder of
linear length L ¼ 8, with fixed parameters t ¼ 1 and U ¼ 4, as a
function of the temperature for two values of t⊥. The dashed line
indicates the expected high-temperature limit ti;iþ1 ≃ βt. The
inset shows a magnification of the plot for β ≥ 1 in a semilog-
arithmic scale.
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agreement with the theoretical expectation ĤE ¼
constþ βĤA þOðβ2Þ, β → 0, which follows easily by
Taylor expanding the density matrix ρ ∼ expð−βĤÞ to the
lowest order in β. Upon decreasing the temperature, one
eventually crosses the charge and spin gaps, leading to a
suppression of the charge fluctuations. The entanglement
Hamiltonian reflects this physics, showing a nonmonotonic
temperature dependence of ti;iþ1, which starts to decrease
for large enough values of β. The value of β at which ti;iþ1

stops to grow decreases upon increasing t⊥, because the
gaps increase with t⊥ [42,43]. Figure 2 confirms this
observation. Furthermore, a semilog plot of the data shown
in the inset in Fig. 2 supports an exponential suppression of
the hopping constants ti;iþ1 for β → ∞. We notice that the
charge gaps and spin gaps are ΔC ≈ 1.6 and ΔS ≈ 0.6 for
t⊥ ¼ 2 and ΔC ≈ 2.1 and ΔS ≈ 1.3 for t⊥ ¼ 2.5 [42],
respectively; hence, the data in Fig. 2 for the largest values
of β are well below the gaps and essentially approach the
ground state of the model. Hopping terms ti;iþx at distances
x > 1 are negligible compared to the nearest-neighbor
one ti;iþ1.
For this model, we are able to compute all two-body

terms in ĤE. In Fig. 3, we show the on-site Hubbard
repulsion term U. As for the hopping term, it exhibits the
expected linear increase with β for high temperatures.
However, upon crossing the gaps, U saturates to a
t⊥-dependent value. The entanglement Hamiltonian con-
tains also interaction terms which are absent in Eq. (6), such
as a nearest-neighbor antiferromagnetic spin-spin interac-
tion JS⃗iS⃗iþ1 and a next-nearest-neighbor ferromagnetic
interaction J0S⃗iS⃗iþ2, displayed in Figs. 4 and 5. Both J and
J0 vanish at high temperatures, as expected, and grow only
when the temperature is below the gaps of the model.
Additional two-body terms such as particle-particle inter-
actions Vijn̂in̂i and spin-spin interactions at distances
larger than 2 are effectively negligible compared to those
shown in Figs. 3–5. All in all, the entanglement

Hamiltonian exhibits a remarkable crossover between a
Hubbard-like Hamiltonian at high temperatures, where
ĤE ≃ βĤA þ const to a Heisenberg-like Hamiltonian at
low temperatures, where U ≫ t and additional nonfrustrat-
ing spin-spin interactions J and J0 enforce an antiferro-
magnetic order. Such a behavior is analog to what is found
in the two-leg Heisenberg model, where, for antiferromag-
netic interchain and intra-chain couplings, the entangle-
ment spectrum matches the one for a Heisenberg chain
[46,47], as confirmed also by perturbative calculations
showing that for strong rung coupling the entanglement
Hamiltonian is approximately proportional to the restric-
tion of the Hamiltonian to a single leg [48–50]; similar
results have been obtained, e.g., in the case of free fermions
[48], bilayer quantum Hall systems [51], and Hofstadter
bilayers [52] (see also Ref. [53] and references therein).
We notice that our results outperform ED, because a full
spectrum diagonalization of a Hubbard model, needed to
reproduce Figs. 2–5, is currently feasible for lattices with
N ≲ 12 sites [54], corresponding to a L ¼ 6 two-leg ladder.

FIG. 3. The same as Fig. 2 for the on-site Hubbard repulsion U.
FIG. 4. The same as Fig. 2 for the nearest-neighbor spin-spin
interaction J.

FIG. 5. The same as Fig. 2 for the next-nearest-neighbor spin-
spin interaction J0.
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Summary.—In this Letter, we present a general frame-
work for computing the reduced density matrix and the
entanglement Hamiltonian of an interacting fermionic
model. The method is formulated within the auxiliary field
QMC method, and allows one to unbiasedly determine the
reduced density matrix and the entanglement Hamiltonian
as a series of normal-ordered many-body operators. The
method is applied to the Hubbard chain and two-leg
models, where we present the first numerically exact
determination of the one-body and two-body terms of
the entanglement Hamiltonian. The results clearly show the
increase of correlations and entanglement upon lowering
the temperature, and for the two-leg model a change in the
physical behavior of the model upon crossing the gaps,
with the emergence of qualitatively different interactions
in the entanglement Hamiltonian. Our results outperform
current ED techniques; in fact, even if the ground state or
the full spectrum is obtained by ED, the determination of
the entanglement Hamiltonian requires the highly numeri-
cally unstable computation of the logarithm of the reduced
density matrix. Thus, we expect our findings to provide a
benchmark for future studies. The generality of the method
described here paves the way for future investigations of
interacting models, where the knowledge of the entangle-
ment Hamiltonian may provide new useful insights. In fact,
almost all of the entanglement measures can be, in
principle, obtained from the entanglement Hamiltonian.
Its determination with the present method can then allow
one to compute key quantities otherwise inaccessible to
numerical simulations, such as the entanglement negativity
and the von Neumann entanglement entropy, which is
simply equal to the expectation value of the entanglement
Hamiltonian. The method lends itself to study the reduced
density matrix for a subsystem A embedded into a
potentially large system B. Thus, one may investigate
the extension and space dependence of entanglement by,
e.g., considering a possibly small, spatially disconnected,
subsystem A.
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