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When a quantum phase transition is crossed in finite time, critical slowing down leads to the breakdown
of adiabatic dynamics and the formation of topological defects. The average density of defects scales with
the quench rate following a universal power law predicted by the Kibble-Zurek mechanism. We analyze the
full counting statistics of kinks and report the exact kink number distribution in the transverse-field
quantum Ising model. Kink statistics is described by the Poisson binomial distribution with all cumulants
exhibiting a universal power law scaling with the quench rate. In the absence of finite-size effects, the
distribution approaches a normal one, a feature that is expected to apply broadly in systems described by
the Kibble-Zurek mechanism.
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Across a quantum phase transition, the equilibrium
relaxation time diverges. This phenomenon, known as
critical slowing down, is responsible for the nonadiabatic
character of critical dynamics. Preparing the ground state of
the broken-symmetry phase, an ubiquitous task in quantum
science and technology, is thus intrinsically challenging:
traversing the phase transition in finite time leads to the
formation of topological defects. The Kibble-Zurek mecha-
nism (KZM) is the paradigmatic theory to describe this
scenario [1–3]. Its origins are found in the pioneering
insight by Kibble on the role of causality in structure
formation in the early Universe [4,5]. Soon after, it was
pointed out by Zurek that condensed-matter systems offer a
test bed to study the dynamics of symmetry breaking [6–8].
The key prediction of the KZM is that the average density d
of the resulting topological defects scales with the quench
time τQ in which the phase transition is crossed as a
universal power law, d ∝ τ−αQ . The power law exponent α ¼
Dν=ð1þ νzÞ is set by a combination of the dimensionality
of the system D, and the dynamic and correlation-length
(equilibrium) critical exponents denoted by z and ν,
respectively.
The validity of the KZM is however not restricted to the

classical domain. The paradigmatic Landau-Zener formula,
describing excitation formation in two-level systems, was
shown to capture the KZM for long quench times [9,10]. As
a result, paradigmatic models exhibiting quantum phase
transitions, such as the 1D Ising chain, could be shown to
obey the KZM, establishing the validity of the mechanism
in the quantum domain for thermally isolated systems
[9–12]. Due to its broad applicability, the KZM stands out
as a result in statistical mechanics describing nonequili-
brium properties (density of defects) in terms of equilib-
rium quantities (critical exponents). On the applied side, it
suggests the need to pursue adiabatic strategies in quantum

simulations as well as in quantum annealing, where the
mechanism provides useful heuristics.
Under unitary dynamics, the state of the system follow-

ing the crossing of the phase transition is characterized by
collective and coherent quantum excitations. One can thus
expect that even for isolated quantum systems, the order
parameter in the broken symmetry phase as well as the
number of topological defects exhibit fluctuations and are
characterized by a probability distribution. In the classical
domain, the study of the equilibrium probability distribu-
tion of the order parameter has proved useful in spin
systems [13–15], and it is known to be universal in the
scaling limit [14,16]. In the quantum domain, progress has
been made by analyzing the equilibrium distribution of the
magnetization in a variety of critical spin systems [17,18] or
following a sudden quench [19].
Studies of the distribution of topological defects gen-

erated in the course of a phase transition have been limited
to winding numbers. In both classical and quantum
systems, the distribution is known to have zero mean value
and a dispersion typical of a random walk with a number of
steps that can be estimated with the KZM [20–24].
In this Letter, we consider the critical dynamics of the

one-dimensional quantum Ising model in a transverse field
and analyze the distribution of topological defects formed
during the crossing of the critical point in finite time.
The mean of the kink number distribution reproduces the
prediction by the KZM, as expected. We focus on the
characterization of the fluctuations of the kink number
distribution and show that all higher order cumulants share
the universal power law scaling with the quench time in
which the phase transition is traversed. Our results thus
show that the nonadiabatic dynamics leading to the for-
mation of topological defects exhibit a universal behavior
beyond the scope of the Kibble-Zurek mechanism, which
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determines the average density of defects. Said differently,
the KZM can be extended to account for the full distribu-
tion of topological defects.
The quantum Ising model in a transverse field.—As a

paradigmatic model of a quantum phase transition, we
consider the one-dimensional quantum Ising model
[25,26]. The Hamiltonian of a chain of N spins in a
transverse magnetic field g reads,

H ¼ −J
XN
m¼1

ðσzmσzmþ1 þ gσxmÞ: ð1Þ

Its experimental study is amenable via quantum simulation
that has been reported in a variety of platforms including
trapped ions, [27,28], superconducting circuits [29,30],
Rydberg gases [31], and NMR experiments [32]. We
consider periodic boundary conditions σNþ1 ¼ σ1 with
an even N, for simplicity. The phase diagram of the system
is characterized by two critical points gc ¼ �1 separating
a paramagnetic phase (jgj > 1) and a ferromagnetic phase
(jgj < 1).
The Hamiltonian [Eq. (1)] can bewritten as a free fermion

model, making use of the Jordan-Wigner transformation,
σxm¼1–2c†mcm, σxm¼−ðcmþc†mÞ

Q
l<mð1−2c†lclÞ, where

cm are fermionic annihilation operators. As H commutes
with the parity operator, we shall focus on the even
parity subspace, which includes the ground state of the
system. Next we define the Fourier transform cm ¼
e−iπ=4

P
kcke

ikm=
ffiffiffiffi
N

p
, where the momenta allowed by

the boundary conditions are k ∈ f�π=N;�3π=N;…;
�ðN − 1Þπ=Ng, and we take the lattice spacing as a unit
of length. As shown inRef. [12], see aswell Refs. [25,26,33],
the Ising chain Hamiltonian is then given by

H ¼ 2
X
k>0

ψ†
k½σzkðg − cos kÞ þ σxk sin k�ψk; ð2Þ

in terms of the operators ψ†
k ≡ ðc†k; c−kÞ. In this form, it

becomes apparent that the critical dynamics of the Ising
model can be described via the dynamics of an ensemble of
noninteracting two-level systems [12].
To study the quantum critical dynamics, we consider an

Ising chain initially prepared in the ground state, deep in the
paramagnetic phase. The paramagnet is driven across
the phase transition by a time-dependent magnetic field
of the form

gðtÞ ¼ gc

�
1 −

t
τQ

�
; ð3Þ

where gc ¼ 1 and τQ is known as the quench time. The
closing of the gap as the critical point is approached leads to
nonadiabatic dynamics and is responsible for the formation
of topological defects, i.e., kinks in the quantum Ising

chain. We shall be interested in the distribution of the
number of kinks in the nonequilibrium state reached upon
completion of the phase transition at t¼τQ. With gðτQÞ ¼ 0

the Hamiltonian is then that of a pure ferromagnet.
Kink number distribution.—The operator measuring the

number of kinks reads

N̂ ≡ 1

2

XN
n¼1

ð1 − σznσ
z
nþ1Þ ð4Þ

and commutes with the final Hamiltonian at t ¼ τQ. With
it, we can construct the projector onto the subspace with a
given number of kinks n, which can be conveniently
written as

δ½N̂ − n� ¼ 1

2π

Z
π

−π
dθeiθðN̂−nÞ; ð5Þ

using the integral representation of the Kronecker delta. A
similar expression can be used for related observables such
as the distribution of the density of kinks, which takes
continuous values, using Dirac’s delta function instead. The
kink number distribution is given by the expectation value
of this operator

PðnÞ ¼ hδ½N̂ − n�i; ð6Þ

where the angular bracket denotes the expectation value
with respect to the state of the system. In what follows, it
will prove convenient to introduce its Fourier transform
representation

PðnÞ ¼ 1

2π

Z
π

−π
dθP̃ðθ; τQÞe−iθn; ð7Þ

where the characteristic function P̃ðθ; τQÞ reads

P̃ðθ; τQÞ ¼ Tr½ρ̂τQeiθN̂ �: ð8Þ

This expression, being the moment generating function,
contains the exponential of the kink number operator, which
is naturally highly nonlocal in real space. However, it admits
a simple representation in Fourier space, as

N̂ ¼
X
k

γ†kγk; ð9Þ

where γk are the quasiparticle operators that diagonalize the
Hamiltonian [Eq. (2)], i.e., H ¼ P

kEkðγ†kγk − 1=2Þ. In
addition, for quasifree fermions (with periodic boundary
conditions), the time-dependent density matrix preserves the
tensor product structure during unitary time evolution. In
particular, upon completion of the protocol, the quantum
state of the Ising chain is given by ρ̂τQ ¼ ⨂kρ̂k;τQ, where
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ρ̂k;τQ is the density matrix of the k mode. As a result, the
characteristic function factorizes as

P̃ðθ; τQÞ ¼
Y
k

Tr½ρ̂k;τQeiθγ
†
kγk �; ð10Þ

i.e., it reduces to the product of the characteristic function for
each mode k. Said differently, the study of the probability
distribution of the density of defects in an Ising chain is
equivalent to the study of the full counting statistics of the
number of quasiparticles in each mode. The treatment of the
latter resembles early studies in quantum transport in meso-
scopic physics focused on the counting of electrons [34].
Using the fact that γ†kγk is a Fermion number operator with
eigenvalues f0; 1g, one can further simply this expression to
find

P̃ðθ; τQÞ ¼
Y
k

Tr½ρ̂k;τQðI2 þ ðeiθ − 1Þγ†kγkÞ�

¼
Y
k

½1þ ðeiθ − 1Þhγ†kγki�: ð11Þ

We note that Eq. (11) is the characteristic function associated
withN independent randomBernouilli variables (one for each
mode) each of which can take value 1 (mode excited) with
probability pk and value 0 (mode in ground state) with
probability (1 − pk). This is precisely the characteristic
function of the Poisson binomial distribution. The latter is
expected to account for the full counting statistics of defect
formation inquasifree fermionmodels inwhich the number of
topological defects is related to the number of quasiparticles.
A part from the quantum Ising model, these include the XY
model in one dimension as well as the Kitaev model in one
and two spatial dimensions, among other examples [25,26].
Equation (11) is highly advantageous for numerical

computations. In addition, it makes possible an analytical
treatment. The dynamics in each modewith a linear ramp of
the magnetic field [Eq. (3)] is well described by the
Landau-Zener formula that yields [12]

pk ¼ hγ†kγki ¼ exp

�
−
1

ℏ
2πJτQk2

�
: ð12Þ

In turn, this allows one to compute the cumulant generating
function that is given by

logP̃ðθ;τQÞ
¼
X
k

log ½1þðeiθ−1Þhγ†kγki�

¼ N
2π

Z
π

−π
dk log

�
1þðeiθ−1Þexp

�
−
1

ℏ
2πJτQk2

��
; ð13Þ

where the last expression holds in the continuum limit. We
can use the identity logð1þ εÞ ¼ P∞

p¼1ð−1Þpþ1ðεp=pÞ

and perform the integration over the resulting Gaussian
integrand to find

log P̃ðθ; τQÞ ¼ −
X∞
p¼1

ð1 − eiθÞp
p

ffiffiffiffi
p

p Nd × erf
� ffiffiffiffiffiffi

πp
p
2d

�
; ð14Þ

where erfðxÞ is the error function and we recognize the
mean density of defects

d ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffi
ℏ

2JτQ

s
; ð15Þ

which was derived in Ref. [12], validating the KZM in the
quantum domain for quasifree fermion systems.
Scaling limit.—In the limit of slow quenches, the

cumulant generating function can be simplified given that
the average density predicted by KZM d ≪ 1. To leading
order in 1=τQ one finds

log P̃ðθ; τQÞ ¼ −NdLi3=2ð1 − eiθÞ; ð16Þ

in terms of the polylogarithmic function Li3=2ðxÞ ¼P∞
p¼1 x

p=p3=2 [35]. This approximation is equivalent to
setting erf½ ffiffiffiffiffiffi

πp
p

=ð2dÞ� ¼ 1 in Eq. (14). To the best of our
knowledge, Eq. (16) defines a new probability distribution
function PðnÞ.
By definition, the expansion of log P̃ðθ; τÞ generates the

cumulants fκqg of the PðnÞ distribution according to

log P̃ðθ; τQÞ ¼
X∞
q¼1

ðiθÞq
q!

κq: ð17Þ

Making use of it, or by direct comparison with Eq. (14), we
find

κ1 ¼ hni ¼ Nd ¼ N
2π

ffiffiffiffiffiffiffiffiffiffi
ℏ

2JτQ

s
; ð18Þ

recovering the result for the mean value dictated by the
KZM [12]. The variance of the number of kinks, that equals
the second cumulant κ2, is given by

κ2 ¼ hn2i − hni2 ¼ N
2 −

ffiffiffi
2

p

4π

ffiffiffiffiffiffiffiffiffiffi
ℏ

2JτQ

s
; ð19Þ

and has the same dependence with the quench rate as the
mean density hni, being directly proportional to it. Indeed,
this conclusion holds for all cumulants of the distribution,
which do not vanish, making the kink distribution non-
normal. In particular, given the expression for the cumulant
generating function [Eq. (16)], it is clear that all cumulants
are nonzero and proportional to the mean,
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κq ∝ hni ¼ Nd; ð20Þ

for all integer q. From Eqs. (18) and (19), it follows that
κ2=κ1 ¼ ð2 − ffiffiffi

2
p Þ=2 ≈ 0.29 < 1 showing that the kink sta-

tistics are sub-Poissonian, see aswell Refs. [33,36]. The third
cumulant, which equals the third central moment, is given
by κ3 ¼ hðn− hniÞ3i ¼ ð1− 3=

ffiffiffi
2

p þ 2=
ffiffiffi
3

p Þhni≈ 0.033hni.
Thus, κ3 is positive, indicating that the kink number
distribution is slightly leaned to low kink numbers and
has a comparatively longer tail at high kink numbers. Higher
order cumulants are derived in [33,37].
Cumulants κq with q > 2 relative to the mean are small.

Indeed, Li3=2ð1 − eiθÞ ≈ −iθ þ 3θ2=ð2π2Þ, which is equiv-
alent to set to zero all higher order cumulants. As shown in
Ref. [33], the kink number distribution can be approxi-
mated by a normal distribution with mean hni ¼ Nd and
variance hn2i − hni2 ¼ 3hni=π2, namely,

PðnÞ ≃ N

�
Nd;

3

π2
Nd

�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6hni=πp exp

�
−
π2ðn − hniÞ2

6hni
�
; ð21Þ

where hni is given in Eq. (18) as dictated by the KZM.
Equation (21) can be understood as a limiting case of the
binomial distribution in a sequence of Nd=p independent
trials in which the probability of forming a kink is
p ¼ 1 − 3=π2 ≈ 0.69. This indicates that the size of the
domains in the broken-symmetry phase can be identified
with ξ̂ ¼ p=d, such that the number of trials is given by the
ratio N=ξ̂ ¼ Nd=p, which is consistent with previous
estimates [10,12].We suggest that the full counting statistics
of topological defects in systems obeying KZM is broadly
described by a binomial distribution Bðn; pÞ where the
number of domains is set by ND ¼ N=ξ̂ and the probability
for defect formation p is expected to be system dependent.
The probability for n topological defects is then PðnÞ ¼
CND
n pnð1 − pÞND−n, where CNd

n ¼ ND!=½n!ðND − nÞ!�.
For ND ≫ 1 the distribution becomes normal PðnÞ≃
N½NDp;NDpð1 − pÞ�, as in Eq. (21), with κ2 ∝ κ1. This
prediction is consistent with previous studies on sponta-
neous currents formation, e.g., in superfluid or supercon-
ducting rings [6,8,23,24,38,39].
Numerical results.—To demonstrate the accuracy of

these analytical results, we perform numerical simulations
by integrating the Schrödinger equation in Fourier space for
each mode. The dynamics of the phase transition is started
at t ¼ −τQ and induced by the linear ramp of the magnetic
field in Eq. (3). We have checked that the results are robust
with respect to other choices of the initial time t ¼ −aτQ
with a > 1. The final nonequilibrium state is computed at
t ¼ τQ, deep in the ferromagnetic phase. Evaluation of the

expectation value hγ†kγki in this state allows us to compute
the exact kink number statistics using the characteristic
function in Eq. (11). The comparison between analytical
and numerical results is shown in a double logarithmic
representation in Fig. 1 for the first few cumulants of the
distribution (q ¼ 1, 2, 3) as a function of the quench time
τQ. The three cumulants are shown to exhibit a universal

power law scaling κq ∝ τ−1=2Q , consistent with the KZM
prediction α ¼ Dν=ð1þ νzÞ ¼ 1=2 for the 1D quantum
Ising model with critical exponents ν ¼ z ¼ 1. Specifically,
a linear fit to the data in Fig. 1 for quench times
τQ ∈ ½2; 200� yields the power law exponents α ¼
ð0.503; 0.507; 0.539Þ for q ¼ 1, 2, 3 respectively.
Figure 1 also shows deviations from the scaling limit are
first signaled by the third cumulant. The R2 coefficient for
the fit to κ3 is 0.997, in contrast with the unit value for
q ¼ 1, 2. The range of quench times in which the scaling
limit holds decreases in high-order cumulants that are more
sensitive to finite-size effects. Despite the nonzero values of
the latter, Fig. 2 shows that the approximation of PðnÞ by
the normal distribution NðNd; 3Nd=π2Þ becomes highly
accurate for slow quench rates, in the regime where
universal KZM power law scaling holds. We note that
the scaling with the quench time not only breaks down at
fast quenches but also at the onset of adiabaticity when
hni < 1, i.e., τQ > ℏN2=ð8π2JÞ. Further, we note that, in
this limit, the kink statistics are not simply described by the
corresponding truncated normal distribution. The power

FIG. 1. Cumulants κq of the kink number distribution. From top
to bottom, universal scaling of the mean density of defects
(q ¼ 1), the corresponding variance (q ¼ 2) and the third
cumulant (q ¼ 3) of the kink number distribution as a function
of the quench time τQ in which the phase transition is crossed
(N ¼ 400). Symbols represent numerical data while solid lines
describe the analytical approximation derived in the scaling limit.
The mean density (q ¼ 1) is predicted by the KZM, see Eq. (18),
and was numerically confirmed in Refs. [10,12]. For slow
quenches, all cumulants exhibit a universal scaling with the
quench time. The universality of critical dynamics thus extends
beyond the scope of the KZM and governs the full distribution of
topological defects. Deviations from the scaling limit due to
finite-size effects and the onset of adiabatic dynamics are first
signaled by high-order cumulants.
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law scaling can however be prolonged to larger values of τQ
by increasing the system size N, as shown in Ref. [33].
Summary.—In a quantum phase transition, the closing of

the gap leads to a divergence of the relaxation time, known
as critical slowing down. As a result, the dynamics across a
quantum critical point is nonadiabatic and results in the
formation of topological defects. The paradigmatic frame-
work to describe their formation is the Kibble-Zurek
mechanism, whose main prediction is the universal scaling
of the mean defect density with the quench time. We have
investigated the full counting statistics of topological
defects formed in a quantum Ising chain and shown that
the kink number distribution inherits a universal depend-
ence on the quench rate. The kink statistics are found to be
described by the Poisson binomial distribution, which
should be common to quasifree fermion models. In
particular, all cumulants are proportional to the mean
and obey a power law scaling with the quench time,
dictated by the critical exponents of the universality class
to which the system belongs. When the number of domains
is large, the kink statistics become normal (Gaussian
distributed), a feature that is expected to hold broadly,
whenever the Kibble-Zurek mechanism applies. Thus, the
formation of topological defects across a quantum phase
transition exhibits a signature of universality that is not
restricted to the mean value, predicted by the Kibble-Zurek
mechanism, but extends to the full counting statistics. The
universal dependence of the counting statistics on the
quench time should find widespread applications in non-
equilibrium statistical mechanics, quantum simulation,
quantum annealing, and quantum error suppression algo-
rithms. Further, it constitutes an experimentally testable
prediction with current quantum technology. In particular,
it is accessible via quantum simulation in various quantum

platforms including superconducting qubits, Rydberg
gases, and trapped ions.
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