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1Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany

2Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, Denmark
3Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland
4IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
5Donostia International Physics Center, 20018 San Sebastián, Spain

(Received 12 April 2016; revised manuscript received 17 June 2018; published 13 November 2018)

We study the degradability of fermionic Gaussian channels. Fermionic quantum channels are a central
building block of quantum information processing with fermions, and the family of Gaussian channels, in
particular, is relevant in the emerging field of electron quantum optics and its applications for quantum
information. Degradable channels are of particular interest since they have a simple formula that characterizes
their quantum capacity. We derive a simple standard form for fermionic Gaussian channels. This allows us to
fully characterize all degradable n-mode fermionic Gaussian channels. In particular, we show that the only
degradable such channels correspond to the attenuation or amplitude-damping channel for qubits.
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The transmission of quantum states in space and time is a
fundamental physical process, describedbyquantumchannels
[1]. Therefore, the properties of quantum channels and their
capacity to transmit classical or quantum information [2] is
central toquantum informationprocessing.Channel capacities
are difficult to compute since, in general, they require an
optimization over entangled inputs to many channels in
parallel [3,4] and are only known for a few channels.
These complications do not arise for the quantum

capacity of degradable channels [5,6], which can be
expressed as a simple formula (which also equals their
private capacity [7]). Their characteristic property is that
the state of the environment can be reproduced from the
channel output by applying another quantum channel. The
notion has been generalized to weak [8], conjugate [9], and
approximate [10] degradability, maintaining some of its
useful properties.
The most natural information carrier in solid-state systems

areelectrons (quantumdot electrons [11,12]or,more recently,
Majorana fermions in quantumwires [13–15]), i.e., fermions,
whose anticommutation and superselection rules necessitate
the refinement of central concepts of quantum information
theory such as entanglement [16–22]. Impressive experimen-
tal advances (e.g., edge channels [23,24], moving quantum
dots [25–28], quantum dot arrays [29]) demonstrate that
electrons can be cleanly and individually transported in well-
controlled semiconductor systems, providing fermionic
quantum channels over sample-scale distances. These may
serve for on-chip information transfer, e.g., between different
registers of a quantum processor. This progress motivates the
study of fermionic quantum channels [30–33], which are also
useful to describe storage (transmission in time) of quantum
information using fermionic systems.

Fermionic quantumchannels havemostly been studied for
noninteracting fermions, leading to the notion of fermionic
Gaussian channels (FGCs) [34] (also known as “quasifree”
channels [35,36] or “fermionic linear optics” [33,34,37–39]).
These works emphasize the analogy with the case of
Gaussian bosons, which are a very fruitful model for optical
quantum information processing [40,41]. Here we exploit
fermionic phase-space methods to analyze the degradability
of FGCs. We derive a simple standard form that simplifies
further analysis. With the phase-space characterization of
quantum channels [34] in this form, we give a full charac-
terization of all degradablen → n-mode FGCs and show that
there is only one family of such channels, the single-mode
attenuation channel (see Theorem 1).
We consider free fermionswithn-dimensional one-particle

Hilbert space H (“n modes”) [30,42], described by 2n
Hermitian operators ck, k ¼ 1;…; 2n, satisfying fck; clg ¼
2δkl and associated annihilation aj ¼ ðc2j−1 − ic2jÞ=2 and

creation operators a†j ; j ¼ 1;…; n.
Fermionic Gaussian states are those states for which

Wick’s theorem holds [43] (all cumulants are zero). They
are fully described by the 2n × 2n covariance matrix (CM)
[34,36] defined as

γkl ¼
i
2
trðρ½ck; cl�Þ: ð1Þ

The matrix γ is real and antisymmetric. We frequently use
that any such matrix can be brought to the form ([44], p. 18)
Λ ¼ ⊕n

j¼1λjJ, with J ¼ ð0
1
−1
0
Þ, by a special orthogonal

transformation: there exist λj ∈ ½−1; 1� and O ∈ SOð2nÞ
such that γ ¼ OΛOT . The CM Λ describes n modes in
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Gibbs states for the Hamiltonian a†jaj. The Gaussian state is
pure if and only if all λj ¼ �1, or, equivalently, if and only
if γ2 ¼ −1 holds.
If we consider a bipartite system of nþm modes, then

simplification of γ under local operations SOð2nÞ ⊕
SOð2mÞ is of interest. Any pure state Γ can be brought
into the Schmidt form [17] with CM

�Γ11 Γ12

Γ21 Γ22

�
≡
�

J2l ⊕ Λ ð02m×2l K ÞT
ð02m×2l −K Þ Λ

�
ð2Þ

by such local operations. Here n¼ lþm and J2s¼⊕s
j¼1J,

Λ ¼ ⊕m
j¼1λjJ, and K ¼ ⊕m

j¼1κjσx, with λ2j þ κ2j ¼ 1 (the
parameters κj specify the amount of entanglement between
the two parties).
Now let us turn to Fermionic Gaussian channels. We

consider quantum channels (trace-preserving completely
positive maps) that act on a finite set of n fermionic modes
and map Gaussian states to Gaussian states. As discussed in
[34], they are fully characterized by how they transform the
2n × 2n covariance matrix γ of the input state. An n →
m-mode FGC T is defined by a 2m × 2n matrix A and an
antisymmetric 2m × 2m matrix B as

T ≡ T ðA;BÞ∶ γ ↦ AγAT þ B: ð3Þ

Equivalently, a channel T ðA;BÞ can be characterized via
its Choi-Jamiolkowski (CJ) state [6], which is given by the
state obtained if the channel acts on the first half of a
maximally entangled state. For Gaussian channels, the CJ
state is Gaussian with CM MðA;BÞ ¼ ð B

−AT
A
0
Þ, since the

maximally entangled state of 2n fermionic modes can be
chosen Gaussian [l ¼ 0 and λj ¼ 0, κj ¼ 1, ∀ j in Eq. (2)].
This yields a practical necessary and sufficient criterion for
ðA;BÞ to define a valid quantum channel [34]: T ðA;BÞ
describes a valid FGC if and only if the corresponding
CJ-CM is a valid CM, i.e., if and only if 1þ iMðA;BÞ ≥ 0,
which is readily seen (see the Supplemental Material [45],
Lemma S1) to be the case if and only if

1 − iB − AAT ≥ 0: ð4Þ

This implies that B is a valid CM and that 1 − AAT ≥ 0 for
FGCs and that the kernel of B contains that of 1 − AAT :
kerB ⊇ kerð1 − AATÞ. Thus, the singular values of A must
be ≤ 1 and B must vanish on the unit eigenspace of AAT

(the perfectly transmitted modes). This ensures that B0 ¼
ð1 − AATÞ−1=2Bð1 − AATÞ−1=2 is well defined and a CM
(the inverse denotes the Moore-Penrose pseudoinverse [51]
if 1 − AAT has a kernel).
Every quantum channel T can be represented as a

unitary acting on the system and an initially factorized
environment prepared in some state ρE (see Fig. 1). Thus,

T comes with a second channel, which describes what is
leaked into the environment. For pure ρE, this channel is
unique up to isometries and is called the complementary
channel (of T ), denoted by T c. For our purposes, all these
complementary channels are equivalent (see Supplemental
Material [45], Lemma S3).
The relation between T and T c has important conse-

quences for certain capacities of T [5–7]. For example, if it
were possible to obtain, for every input ρ, the channel
output T ðρÞ by suitably postprocessing the output of T c,
then the channel T has vanishing quantum capacity, since
any nonzero capacity would contradict the no-cloning
principle [6]. Such channels for which there exists a
completely positive (CP) map P such that P½T cðρÞ� ¼
T ðρÞ are called “antidegradable” [52].
A more subtle consequence holds if there exists a

quantum channel W such that the concatenation of W
and T is equal to the complementary channel T c. Such
channels are called “degradable” and have quantum
capacity that can be characterized by a simple formula
[5]. Degradable and antidegradable channels (and their
“conjugate” relatives [9,53]) are at present the only ones for
which a good understanding of their quantum capacity can
be claimed. As we shall see, the simple structure of
fermionic Gaussian channels allows a straightforward
answer to the question of which n → n channels are
degradable. This is in contrast to the available characteri-
zation for bosons, where the full degradability description
is restricted to the one-mode case [52,54] or to the notion of
weak degradability [55]. Note that, while degradability can
be proven by constructing a degrading channel [6], to show
that a channel is not degradable requires to show that none
of the (possibly many, nonequivalent [56]) degrading maps
is CP. In the case of interest here, we can show that the map
is effectively unique. Our main result is summarized in the
following theorem:
Theorem 1.—All degradable n → n fermionic Gaussian

channels act on the covariance matrix γ as

T p∶ γ ↦ ð1 − pÞγ þ pJ2n; ð5Þ

up to unitary pre- and postprocessing or are a direct sum of
such channels. Here, 0 ≤ p ≤ 1

2
and J2n ¼ −i ⊕n

j¼1 σy.

FIG. 1. Channel and complementary channel. For pure envi-
ronmental state ρE, the dilation UE and the complementary
channel are unique (up to isometries).
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The proof proceeds in three steps. First, we observe that
concatenating a channel with unitary channels does not
affect (anti)degradability. This allows us to simplify the
further discussion by focusing on FGCs in standard form in
which the matrix A is diagonal with descendingly ordered,
positive eigenvalues. This form can always be reached by
concatenating the channel with Gaussian unitaries that
effect the singular value decomposition of A ¼ O1DO2

(see Supplemental Material [45], Lemma S6). Additionally,
FGCs that act independently on two subsets of modes,
i.e., T ðA;BÞ with A ¼ A1 ⊕ A2 and B ¼ B1 ⊕ B2, are
(anti)degradable if and only if both T ðAi;BiÞ are (see
Supplemental Material [45], Lemma S7). Furthermore, a
degrading map (CP or not) can only exist if A is invertible
and, in this case, the FGC in question is itself invertible.
Then the degrading map is unique (see Lemma S4 in the
Supplemental Material [45] and Ref. [56] in this Letter) and
the FGC is degradable if and only if the degrading map is
CP. We then show that it is necessary that D ≥ 1=

ffiffiffi
2

p
and

that the channel has a small Choi rank [6] (its minimal
dilation requires no more than n modes). Finally, we prove
that such channels cannot be degradable unlessD is a direct
sum of (even-dimensional) terms ∝ 1 (D ¼ ⊕αk12nk for
αk > 0) and the environmental state CM γp a direct sum of
pure CMs ⊕k γp;k (same partition as D).
Let us now construct the standard form and the corre-

sponding degrading map. Without loss of generality, we
consider an n → m FGC T ðA;BÞ with

A ¼ ðD 02ðn−mÞ Þ or A ¼
�

D

02ðm−nÞ

�
; ð6Þ

depending on whether m ≤ n or m ≥ n. Here 1 ≥ D ≥ 0 is
a square matrix with dimension 2 × min fn;mg.
If D has L ≥ 2 eigenvalues equal to 1, it implies that

bL=2c modes are transmitted perfectly. As B then vanishes
on all those modes, the channel is a particular case of a
Gaussian product channel ðA;BÞ ¼ ð1 ⊕ A2; 0 ⊕ B2Þ and
thus it is degradable if and only if T ðA2;B2Þ is, where A2 now
has at most one singular value equal to 1 and it suffices to
consider such channels in our proof.
First, we need the complementary channel to T A;B

in order to express degradability in terms of A and B.
To this end, it is useful to find a unitary dilation of
T A;B. From Eq. (4), we see that for FGCs AAT ≤ 1 and
kerð1 − AATÞ ⊆ kerðBÞ, and B0 ≔ ð1 − AATÞ−1=2Bð1 −
AATÞ−1=2 is a valid CM. Then it is easy to check that
the n → m FGC T A;B can be obtained by a fermionic
Gaussian unitary represented by OSE0 ∈ SOð2nþ 2mÞ,

OSE0 ¼
 

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12m − AAT

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12n − ATA

p
AT

!
; ð7Þ

acting on the system and an m-mode environment in the
Gaussian state with CM B0. To obtain the complementary
channel, however, the environment should be pure. Let
l ≤ n denote the number of pure modes of B0, i.e.,
B0 ¼ OðJ2l ⊕ LÞOT for 0 ≤ λj < 1, L ¼ ⊕m−l

j¼1λjJ2, and
O ∈ SOð2mÞ. Then

γE ¼ ½O⊕ 12ðm−lÞ�

0
B@
J2l

L K

−K L

1
CA½OT ⊕ 12ðm−lÞ�; ð8Þ

where K ¼ ⊕m−l
j¼1κjσx and λ2j þ κ2j ¼ 1 is a purification of

B0 and T A;B can be obtained by coupling with

OSE ¼ OSE0 ⊕ 12ðm−lÞ ð9Þ

to the 2m − l-mode pure environment in state γE.
There are other physical representations of T A;B with

pure environment γ0E but they are all related isometrically to
each other [1] and are all equivalent for our purposes (see
Supplemental Material [45], Lemma S3).
Using this representation of T A;B, we can read off its

complementary channel T c
A;B. It is the n → nþm − l map

given by

T c
ðA;BÞ ≡ T ðAc;BcÞ∶ γ ↦ AcγAT

c þ Bc; ð10Þ

where

Ac ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ATA
p

0

�
; Bc ¼ ðAT ⊕ 1ÞγEðA ⊕ 1Þ;

with γE as in Eq. (8).
The question of the degradability of the FGC T A;B is

then, simply, if there exists an m → nþm − l FGC T Ã;B̃

such that T Ã;B̃ ∘ T A;B ¼ T Ac;Bc
. The degrading map fol-

lows directly from T A;B and T Ac;Bc
. The map only exists if

A has no kernel and is then given by γ ↦ ÃγÃT þ B̃ with

Ã ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ATA
p

0

�
A−1 ¼

�
A−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − AAT

p

0

�
; ð11Þ

B̃ ¼ ðAT ⊕ 1ÞγEðA ⊕ 1Þ
− ½ðA−1 − ATÞ ⊕ 0�γE½ðA−T − AÞ ⊕ 0�: ð12Þ

Using Eq. (4), we see that T ðÃ;B̃Þ is CP if and only if

M̃ ≡ 1 − ÃÃT − iB̃ ≥ 0: ð13Þ

We have thus constructed a fermionic Gaussian degrading
map for a given FGC whenever it exists. It is then
straightforward to check if it is CP via Eq. (13) and we
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now characterize all FGCs ðA;BÞ for which this is the case.
Note that it is sufficient to check the properties of the map
T ðÃ;B̃Þ since the channel T ðA;BÞ is invertible for invertible A
(cf. Supplemental Material [45]), and the degrading map is
unique in this case [56]. One may wonder whether our
purely Gaussian discussion allows for possible non-
Gaussian degrading maps. But since the Gaussian states
span the space of all fermionic density matrices (see [45],
Lemma S5), T ðA;BÞ is indeed invertible as a linear map on
the space of fermionic density matrices and the Gaussian
degrading map (11) and (12) is unique.
First, we claim that for an n → n FGC to be degradable it

is necessary that its Choi rank is ≤ n modes. Assuming
standard form A ¼ D, reexpressing M̃ in Eq. (13) in terms
of D and the pure 2n − l-mode environmental state γE of a
minimal dilation, we obtain, after repeated application
of the Schur complement to check positivity of a block
matrix (see Supplemental Material [45], Lemma S1), the
inequality

2D−2 −D−4 − ½Oð02l ⊕ 12ðn−lÞÞOT � ≥ 0 ð14Þ

as a necessary condition for degradability, where O ∈
SOð2nÞ depends on γE (for details, see the Supplemental
Material [45]). This inequality cannot be fulfilled unless
l ¼ n; i.e., the environment is no larger than the system. To
see this, we use a condition on the eigenvalues of two
Hermitian matrices and their sum implied by Horn’s
conjecture, [57,58]: let λi, μj, νk denote the descendingly
ordered eigenvalues of the Hermitian matrices X, Y, X þ Y,
respectively. Then we have [58]

νk ≤ λi þ μj ∀ iþ j ¼ kþ 1: ð15Þ

We take X ¼ 2D−2 −D−4 and Y ¼ −Oð02l ⊕ 12ðn−lÞÞOT

and pick j ¼ 2lþ 1. Then μj ¼ −1 and for all i > 1 we
have

ν2lþi ≤ λi þ μ2lþ1 ¼
2

d2i
−

1

d4i
− 1 ∀ i ¼ 1;…; 2ðn − lÞ:

Unless n − l ¼ 0 (pure environment), we can take i ¼ 2,
which means that di < 1 (since in standard form we have,
at most, one singular value of 1), in which case the
expression on the rhs is negative.
Let us now focus on an n → n FGC with an n-mode

environment. To complete the proof of Theorem 1, we
show the following Lemma.
Lemma 1.—(Only constant-loss channels are degrad-

able.) An n → n FGC T ðD;BÞ in standard form with
Choi rank of ≤ n modes is degradable if and only if D ¼
⊕j ðdj12njÞ, dj ≥ 1=

ffiffiffi
2

p
, and B ¼⊕j Bj.

Proof.—Following analogous arguments to the construc-
tion above (in particular, using thatB¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−D−2

p
γp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−D−2

p

for an n-mode pure state CM γp), the degradability condition
(13) becomes

21−D−2− i

�
DγpD−

�
1

D
−D

�
γp

�
1

D
−D

��
≥ 0: ð16Þ

We show now that this only holds if D ≥ 1=
ffiffiffi
2

p
and if

ðγpÞkl ¼ 0 whenever dk ≠ dl, i.e., if γp is a direct sum of
pure CMs ⊕m γp;m and D is a corresponding direct sum of
terms proportional to 1.
We already saw that D ≥ 1=

ffiffiffi
2

p
is necessary for degrad-

ability. If there are one or more eigenvalues di ¼ 1=
ffiffiffi
2

p
,

then the real part of (16) has a kernel and the inequality can
only hold if γij ¼ γji ¼ 0 for all j such that dj ≠ 1=

ffiffiffi
2

p
.

That is, a channel with some dj ¼ 1=
ffiffiffi
2

p
can only be

degradable if D ¼ D0 ⊕ ð1= ffiffiffi
2

p Þ1 and γ ¼ γ1 ⊕ γ2 in
accordance with Theorem 1 (by purity and antisymmetry,
both blocks have to have even dimension).
We now assume D > 1=

ffiffiffi
2

p
. Multiplying Eq. (16) by

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −D−2

p
from left and right, the imaginary part

becomes γp þ R, where

R ¼ −γp þ
1

W
½γp −D2γp − γpD2� 1

W
; ð17Þ

with W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D2 − 1

p
.

Since γp is pure, iγp has spectrum f�1g with eigen-
projectors P�. Thus, inequality (16) becomes

2Pþ þ iR ≥ 0; ð18Þ

which shows that the overlap trðP−RÞ ¼ −itrðγpRÞ must
vanish. As detailed in the Supplemental Material [45], the
matrix R is the pointwise (Hadamard) product of γp with a
symmetric matrix r: Rkl ¼ rklðγpÞkl, and the rkl are strictly
negative whenever dk ≠ dl. Using the symmetry of r and
antisymmetry and purity of γp then shows (see [45]) that
this imposes ðγpÞkl ¼ 0 whenever dk ≠ dl, i.e., the direct-
sum decomposition of D and γp into blocks of even
dimension corresponding to constant dk. □

A final simplification used in Theorem 1 is that the pure
state of the environment can be taken to be the vacuum state
(with CM γE ¼ J). This is the case since for A ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − p
p

1
the FGCs T A;pγE and T A;pJ differ only by unitary pre- and
postprocessing.
In summary, we have shown that there is only one family

of degradable fermionic Gaussian channels, namely, the
attenuation channel T p∶γ ↦ ð1 − pÞγ þ pJ2n (with losses
p ∈ ½0; 1=2�). Hence FGCs have a much simpler degrad-
ability structure than their qubit or bosonic Gaussian
counterparts [6,55]. In contrast to the case of qubits, there
are no degradable n-mode FGCs with large environment,
nor any (nontrivial) Hadamard channels ([2], p. 196f). Note
that even channels very close to the ideal one such as TA;B
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with A ¼ diagð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
Þ, B ¼ xyJ, or A ¼ α1,

B ¼ 0 are not degradable (unless x ¼ y or α ¼ 1,
respectively).
We can exploit the degradability of T p to compute

its quantum capacity QðT pÞ given by the channel’s
coherent information [2]: QðT pÞ ¼ maxγ fS½T pðγÞ�−
S½ðT p ⊕ 1ÞðΓÞ�g, where Γ is a purification of γ. That
we can restrict to Gaussian input is a consequence of the
extremality of Gaussian states as shown in [54,59] (for
bosons) and generalized to fermions in [60] (see also [45]).
With γ ¼ λJ (general one-modeCM),T pðγÞ has eigenvalues
�i½pþ ð1 − pÞλ�; we can take Γ ¼ ð λJ

−
ffiffiffiffiffiffiffi
1−λ2

p
X

ffiffiffiffiffiffiffi
1−λ2

p
X

λJ Þ and
find that ðT ⊕ 1ÞðΓÞ has eigenvalues �i (one pure mode)
and �ið1 − pþ pλÞ. This reduces the computation
of Q to a simple one-parameter optimization: QðpÞ ¼
max−1≤λ≤1fH½ð1 − pÞð1 − λÞ=2� −H½pð1 − λÞ=2�g, where
HðpÞ ¼ −p logp − ð1 − pÞ logð1 − pÞ is the binary
entropy. The channel T p is equivalent to the qubit

amplitude-damping channel with Kraus operators K1 ¼
j0ih0j þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − pÞp j1ih1j and K2 ¼ ffiffiffiffi

p
p j0ih1j, whose quan-

tum capacity was computed in [61]. Notably, the classical
capacity [2] of the qubit amplitude damping channel remains
unknown to date, although lower [61] and upper bounds [62]
have been obtained.
There are several interesting directions for further

research. (1) The generalization of the above result to
the case of n → m channels is important, in particular, for
the antidegradability even of n → n channels, since, in
general, the complementary channel is a map between
systems of different numbers of modes. While it is clear
that n → m channels with m < n are never degradable
(since A has a kernel), in the case m > n, the positivity of
the real part of Eq. (14) is no longer easy to decide since it
may depend on the details of γE and examples of degrad-
able channels with Choi rank larger than maxfn;mg exist
(see [45]). Moreover, the uniqueness of the degrading map
is no longer ensured and all such maps (both Gaussian and,
possibly, non-Gaussian) would need to be examined.
(2) FGCs may provide a simple setting to search for
exclusively conjugate-degradable channels [9]. (3) Our
result on the degradability of FGCs may be of use in
bounding the private and quantum capacity of some non-
degradable channels or non-Gaussian channels by exploit-
ing the notion of approximate degradability [10] or
following [54] via a fermionic Gaussian teleportation
channel.
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[54] M.M. Wolf, D. Pérez-García, and G. Giedke, Phys. Rev.

Lett. 98, 130501 (2007).
[55] F. Caruso, J. Eisert, V. Giovannetti, and A. S. Holevo, New

J. Phys. 10, 083030 (2008).
[56] K. Brádler, Open Syst. Inf. Dyn. 22, 1550026 (2015).
[57] A. Horn, Pac. J. Math. 12, 225 (1962).
[58] A.Knutson andT.Tao,NoticesAm.Math. Soc.2, 175 (2001).
[59] M.M. Wolf, G. Giedke, and J. I. Cirac, Phys. Rev. Lett. 96,

080502 (2006).
[60] E.Greplová,Master’s thesis,Ludwig-Maximilians-Universität

München, 2013.
[61] V. Giovannetti and R. Fazio, Phys. Rev. A 71, 032314 (2005).
[62] X. Wang, W. Xie, and R. Duan, IEEE Trans. Inf. Theory 64,

640 (2018).

PHYSICAL REVIEW LETTERS 121, 200501 (2018)

200501-6

https://doi.org/10.1038/nature10416
https://doi.org/10.1038/nature10416
https://doi.org/10.1038/nnano.2016.82
https://doi.org/10.1002/pssb.201600658
https://doi.org/10.1002/pssb.201600658
https://doi.org/10.1038/s41534-017-0024-4
http://arXiv.org/abs/quant-ph/0507282
https://doi.org/10.1103/PhysRevLett.95.260503
https://doi.org/10.1063/1.3597233
https://doi.org/10.1063/1.3597233
https://doi.org/10.1088/1367-2630/15/1/013015
https://doi.org/10.1088/1367-2630/15/1/013015
https://doi.org/10.1007/BF01220502
https://doi.org/10.1063/1.2841326
https://doi.org/10.1063/1.2841326
http://arXiv.org/abs/quant-ph/0108033
https://doi.org/10.1007/s10701-005-8657-0
https://doi.org/10.1007/s10701-005-8657-0
https://doi.org/10.1098/rspa.2008.0189
https://doi.org/10.1098/rspa.2008.0189
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1007/b11607427
https://doi.org/10.1088/0305-4470/39/2/001
https://doi.org/10.1088/0305-4470/39/2/001
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.200501
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.200501
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.200501
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.200501
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.200501
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.200501
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.200501
https://doi.org/10.1103/PhysRevLett.87.167904
https://doi.org/10.1103/PhysRevLett.87.167904
https://doi.org/10.1103/PhysRevA.97.042325
https://doi.org/10.1103/PhysRevA.97.042325
https://doi.org/10.2307/3212771
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1063/1.1643788
https://doi.org/10.1063/1.1643788
https://doi.org/10.1103/PhysRevA.74.062307
https://doi.org/10.1103/PhysRevA.74.062307
https://doi.org/10.1103/PhysRevA.85.012326
https://doi.org/10.1103/PhysRevLett.98.130501
https://doi.org/10.1103/PhysRevLett.98.130501
https://doi.org/10.1088/1367-2630/10/8/083030
https://doi.org/10.1088/1367-2630/10/8/083030
https://doi.org/10.1142/S1230161215500262
https://doi.org/10.2140/pjm.1962.12.225
https://doi.org/10.1103/PhysRevLett.96.080502
https://doi.org/10.1103/PhysRevLett.96.080502
https://doi.org/10.1103/PhysRevA.71.032314
https://doi.org/10.1109/TIT.2017.2741101
https://doi.org/10.1109/TIT.2017.2741101

